mixvideo-v2/cargos/tvai/README.md

269 lines
6.7 KiB
Markdown

# TVAI - Topaz Video AI Integration Library
A Rust library for integrating with Topaz Video AI to perform video and image enhancement including super-resolution upscaling and frame interpolation.
## Features
- 🎬 **Video Super-Resolution**: Upscale videos using AI models
- 🎞️ **Frame Interpolation**: Create smooth slow motion effects
- 🖼️ **Image Upscaling**: Enhance image resolution and quality
-**GPU Acceleration**: CUDA and hardware encoding support
- 🔧 **Multiple AI Models**: 16 upscaling and 4 interpolation models
- 📦 **Batch Processing**: Process multiple files efficiently
- 🎛️ **Flexible Configuration**: Fine-tune processing parameters
## Requirements
- [Topaz Video AI](https://www.topazlabs.com/topaz-video-ai) installed
- Rust 1.70+
- FFmpeg (included with Topaz Video AI)
- Optional: CUDA-compatible GPU for acceleration
## Installation
Add this to your `Cargo.toml`:
```toml
[dependencies]
tvai = "0.1.0"
```
## Quick Start
### Video Upscaling
```rust
use tvai::*;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Quick 2x upscaling
quick_upscale_video(
std::path::Path::new("input.mp4"),
std::path::Path::new("output.mp4"),
2.0,
).await?;
Ok(())
}
```
### Image Upscaling
```rust
use tvai::*;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Quick 4x image upscaling
quick_upscale_image(
std::path::Path::new("photo.jpg"),
std::path::Path::new("photo_4x.png"),
4.0,
).await?;
Ok(())
}
```
### Advanced Usage
```rust
use tvai::*;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Detect Topaz installation
let topaz_path = detect_topaz_installation()
.ok_or("Topaz Video AI not found")?;
// Create configuration
let config = TvaiConfig::builder()
.topaz_path(topaz_path)
.use_gpu(true)
.build()?;
// Create processor
let processor = TvaiProcessor::new(config)?;
// Custom upscaling parameters
let params = VideoUpscaleParams {
scale_factor: 2.0,
model: UpscaleModel::Iris3,
compression: 0.0,
blend: 0.1,
quality_preset: QualityPreset::HighQuality,
};
// Process video
let result = processor.upscale_video(
std::path::Path::new("input.mp4"),
std::path::Path::new("output.mp4"),
params,
).await?;
println!("Processing completed in {:?}", result.processing_time);
Ok(())
}
```
## AI Models
### Upscaling Models
- **Iris v3** - Best general purpose model
- **Nyx v3** - Optimized for portraits
- **Theia Fidelity v4** - Old content restoration
- **Gaia HQ v5** - Game/CG content
- **Proteus v4** - Problem footage repair
- And more...
### Interpolation Models
- **Apollo v8** - High quality interpolation
- **Chronos v2** - Animation content
- **Apollo Fast v1** - Fast processing
- **Chronos Fast v3** - Fast animation
## Presets
The library includes optimized presets for common use cases:
```rust
// Video presets
let old_video_params = VideoUpscaleParams::for_old_video();
let game_params = VideoUpscaleParams::for_game_content();
let animation_params = VideoUpscaleParams::for_animation();
let portrait_params = VideoUpscaleParams::for_portrait();
// Image presets
let photo_params = ImageUpscaleParams::for_photo();
let artwork_params = ImageUpscaleParams::for_artwork();
let screenshot_params = ImageUpscaleParams::for_screenshot();
```
## System Detection
```rust
// Detect Topaz installation
let topaz_path = detect_topaz_installation();
// Check GPU support
let gpu_info = detect_gpu_support();
// Check FFmpeg availability
let ffmpeg_info = detect_ffmpeg();
```
## Error Handling
The library uses the `anyhow` crate for error handling:
```rust
use tvai::*;
match quick_upscale_video(input, output, 2.0).await {
Ok(result) => println!("Success: {:?}", result),
Err(TvaiError::TopazNotFound(path)) => {
eprintln!("Topaz not found at: {}", path);
},
Err(TvaiError::FfmpegError(msg)) => {
eprintln!("FFmpeg error: {}", msg);
},
Err(e) => eprintln!("Other error: {}", e),
}
```
## Development Status
**COMPLETE** - All core features implemented and tested!
- [x] Basic project structure
- [x] FFmpeg management
- [x] Core processor framework
- [x] Video upscaling implementation (16 AI models)
- [x] Frame interpolation implementation (4 AI models)
- [x] Image upscaling implementation
- [x] Batch processing (videos and images)
- [x] Progress callbacks and monitoring
- [x] Global configuration management
- [x] Preset management system
- [x] Performance optimization
- [x] Enhanced error handling
- [x] Comprehensive testing (unit + integration + benchmarks)
- [x] Complete documentation (API + User Guide)
## Documentation
### English
- 📖 [API Documentation](docs/API.md) - Complete API reference
- 📚 [User Guide](docs/USER_GUIDE.md) - Comprehensive usage guide
### 中文文档
- 📖 [API 文档](docs/API文档.md) - 完整 API 参考
- 📚 [用户指南](docs/用户指南.md) - 详细使用指南
- 📋 [中文 README](README_CN.md) - 中文版说明文档
### Resources
- 🔧 [Examples](examples/) - Working code examples
- 🧪 [Tests](tests/) - Integration tests
- 📊 [Benchmarks](benches/) - Performance benchmarks
## Performance
The library is optimized for performance with:
- **GPU Acceleration** - CUDA and hardware encoding support
- **Concurrent Processing** - Configurable parallel operations
- **Memory Management** - Efficient temporary file handling
- **Smart Caching** - Intelligent resource utilization
- **Progress Monitoring** - Real-time performance tracking
Run benchmarks with:
```bash
cargo bench
```
## Testing
Comprehensive test suite including:
- **Unit Tests** - Core functionality testing
- **Integration Tests** - End-to-end workflow testing
- **Benchmark Tests** - Performance validation
Run tests with:
```bash
cargo test
cargo test --release # For performance tests
```
## License
MIT License - see LICENSE file for details.
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
### Development Setup
1. Install Rust 1.70+
2. Install Topaz Video AI
3. Clone the repository
4. Run tests: `cargo test`
5. Run examples: `cargo run --example basic_usage`
## Changelog
### v0.1.0 (Current)
- ✅ Complete video processing (upscaling + interpolation)
- ✅ Complete image processing (upscaling + batch operations)
- ✅ 16 AI upscaling models + 4 interpolation models
- ✅ Global configuration and preset management
- ✅ Performance monitoring and optimization
- ✅ Enhanced error handling with user-friendly messages
- ✅ Comprehensive documentation and examples
- ✅ Full test coverage (unit + integration + benchmarks)