|
|
||
|---|---|---|
| .. | ||
| benches | ||
| docs | ||
| examples | ||
| src | ||
| tests | ||
| Cargo.toml | ||
| README.md | ||
| README_CN.md | ||
README.md
TVAI - Topaz Video AI Integration Library
A Rust library for integrating with Topaz Video AI to perform video and image enhancement including super-resolution upscaling and frame interpolation.
Features
- 🎬 Video Super-Resolution: Upscale videos using AI models
- 🎞️ Frame Interpolation: Create smooth slow motion effects
- 🖼️ Image Upscaling: Enhance image resolution and quality
- ⚡ GPU Acceleration: CUDA and hardware encoding support
- 🔧 Multiple AI Models: 16 upscaling and 4 interpolation models
- 📦 Batch Processing: Process multiple files efficiently
- 🎛️ Flexible Configuration: Fine-tune processing parameters
Requirements
- Topaz Video AI installed
- Rust 1.70+
- FFmpeg (included with Topaz Video AI)
- Optional: CUDA-compatible GPU for acceleration
Installation
Add this to your Cargo.toml:
[dependencies]
tvai = "0.1.0"
Quick Start
Video Upscaling
use tvai::*;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Quick 2x upscaling
quick_upscale_video(
std::path::Path::new("input.mp4"),
std::path::Path::new("output.mp4"),
2.0,
).await?;
Ok(())
}
Image Upscaling
use tvai::*;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Quick 4x image upscaling
quick_upscale_image(
std::path::Path::new("photo.jpg"),
std::path::Path::new("photo_4x.png"),
4.0,
).await?;
Ok(())
}
Advanced Usage
use tvai::*;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Detect Topaz installation
let topaz_path = detect_topaz_installation()
.ok_or("Topaz Video AI not found")?;
// Create configuration
let config = TvaiConfig::builder()
.topaz_path(topaz_path)
.use_gpu(true)
.build()?;
// Create processor
let processor = TvaiProcessor::new(config)?;
// Custom upscaling parameters
let params = VideoUpscaleParams {
scale_factor: 2.0,
model: UpscaleModel::Iris3,
compression: 0.0,
blend: 0.1,
quality_preset: QualityPreset::HighQuality,
};
// Process video
let result = processor.upscale_video(
std::path::Path::new("input.mp4"),
std::path::Path::new("output.mp4"),
params,
).await?;
println!("Processing completed in {:?}", result.processing_time);
Ok(())
}
AI Models
Upscaling Models
- Iris v3 - Best general purpose model
- Nyx v3 - Optimized for portraits
- Theia Fidelity v4 - Old content restoration
- Gaia HQ v5 - Game/CG content
- Proteus v4 - Problem footage repair
- And more...
Interpolation Models
- Apollo v8 - High quality interpolation
- Chronos v2 - Animation content
- Apollo Fast v1 - Fast processing
- Chronos Fast v3 - Fast animation
Presets
The library includes optimized presets for common use cases:
// Video presets
let old_video_params = VideoUpscaleParams::for_old_video();
let game_params = VideoUpscaleParams::for_game_content();
let animation_params = VideoUpscaleParams::for_animation();
let portrait_params = VideoUpscaleParams::for_portrait();
// Image presets
let photo_params = ImageUpscaleParams::for_photo();
let artwork_params = ImageUpscaleParams::for_artwork();
let screenshot_params = ImageUpscaleParams::for_screenshot();
System Detection
// Detect Topaz installation
let topaz_path = detect_topaz_installation();
// Check GPU support
let gpu_info = detect_gpu_support();
// Check FFmpeg availability
let ffmpeg_info = detect_ffmpeg();
Error Handling
The library uses the anyhow crate for error handling:
use tvai::*;
match quick_upscale_video(input, output, 2.0).await {
Ok(result) => println!("Success: {:?}", result),
Err(TvaiError::TopazNotFound(path)) => {
eprintln!("Topaz not found at: {}", path);
},
Err(TvaiError::FfmpegError(msg)) => {
eprintln!("FFmpeg error: {}", msg);
},
Err(e) => eprintln!("Other error: {}", e),
}
Development Status
✅ COMPLETE - All core features implemented and tested!
- Basic project structure
- FFmpeg management
- Core processor framework
- Video upscaling implementation (16 AI models)
- Frame interpolation implementation (4 AI models)
- Image upscaling implementation
- Batch processing (videos and images)
- Progress callbacks and monitoring
- Global configuration management
- Preset management system
- Performance optimization
- Enhanced error handling
- Comprehensive testing (unit + integration + benchmarks)
- Complete documentation (API + User Guide)
Documentation
English
- 📖 API Documentation - Complete API reference
- 📚 User Guide - Comprehensive usage guide
中文文档
Resources
- 🔧 Examples - Working code examples
- 🧪 Tests - Integration tests
- 📊 Benchmarks - Performance benchmarks
Performance
The library is optimized for performance with:
- GPU Acceleration - CUDA and hardware encoding support
- Concurrent Processing - Configurable parallel operations
- Memory Management - Efficient temporary file handling
- Smart Caching - Intelligent resource utilization
- Progress Monitoring - Real-time performance tracking
Run benchmarks with:
cargo bench
Testing
Comprehensive test suite including:
- Unit Tests - Core functionality testing
- Integration Tests - End-to-end workflow testing
- Benchmark Tests - Performance validation
Run tests with:
cargo test
cargo test --release # For performance tests
License
MIT License - see LICENSE file for details.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Development Setup
- Install Rust 1.70+
- Install Topaz Video AI
- Clone the repository
- Run tests:
cargo test - Run examples:
cargo run --example basic_usage
Changelog
v0.1.0 (Current)
- ✅ Complete video processing (upscaling + interpolation)
- ✅ Complete image processing (upscaling + batch operations)
- ✅ 16 AI upscaling models + 4 interpolation models
- ✅ Global configuration and preset management
- ✅ Performance monitoring and optimization
- ✅ Enhanced error handling with user-friendly messages
- ✅ Comprehensive documentation and examples
- ✅ Full test coverage (unit + integration + benchmarks)