mixvideo-v2/cargos/text-video-agent-rust-sdk/examples/health_check.rs

66 lines
2.0 KiB
Rust

use text_video_agent_client::apis::configuration::Configuration;
use text_video_agent_client::apis::{default_api, midjourney_api, llm_api};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// 创建支持 HTTPS 的客户端
let client = reqwest::Client::builder()
.timeout(std::time::Duration::from_secs(30))
.build()?;
// 创建配置
let config = Configuration {
base_path: "https://bowongai-dev--text-video-agent-fastapi-app.modal.run".to_string(),
user_agent: Some("text-video-agent-rust-client/1.0.6".to_string()),
client,
basic_auth: None,
oauth_access_token: None,
bearer_access_token: None,
api_key: None,
};
println!("🚀 文本视频智能体 API 健康检查");
println!("================================");
println!("API 地址: {}", config.base_path);
println!();
// 1. 测试根路径
println!("📍 测试根路径...");
match default_api::root_get(&config).await {
Ok(response) => {
println!("✅ 根路径响应: {}", response);
}
Err(e) => {
println!("❌ 根路径错误: {:?}", e);
}
}
println!();
// 2. 测试 Midjourney 健康检查
println!("🎨 测试 Midjourney 健康检查...");
match midjourney_api::health_check_api_mj_health_get(&config).await {
Ok(response) => {
println!("✅ Midjourney 健康状态: {}", response);
}
Err(e) => {
println!("❌ Midjourney 健康检查错误: {:?}", e);
}
}
println!();
// 3. 测试获取支持的 LLM 模型
println!("🧠 获取支持的 LLM 模型...");
match llm_api::llm_supported_models(&config).await {
Ok(response) => {
println!("✅ 支持的模型: {}", response);
}
Err(e) => {
println!("❌ 获取模型列表错误: {:?}", e);
}
}
println!();
println!("🎯 健康检查完成!");
Ok(())
}