mixvideo-v2/cargos/tvai
imeepos c683557307 feat: 完成 tvai 库视频处理功能 (阶段三)
视频格式转换功能
- 实现 images_to_video() 图像序列转视频
- 实现 video_to_images() 视频转图像序列
- 支持多种图像格式 (PNG, JPG, TIFF, BMP)
- 智能帧序列处理和命名
- 质量预设和编码参数优化

 视频超分辨率处理
- 实现 upscale_video() 完整超分辨率功能
- 支持所有 16 种 Topaz AI 模型
- 参数验证和模型约束检查
- GPU 加速和编码优化
- 自动 Topaz FFmpeg 滤镜构建

 帧插值功能
- 实现 interpolate_video() 帧插值处理
- 支持所有 4 种插值模型
- 智能 FPS 计算和目标帧率设置
- 高质量慢动作效果生成
- 参数验证和范围检查

 组合处理流水线
- 实现 enhance_video() 组合增强功能
- 支持超分辨率 + 插值的完整流水线
- 智能中间文件管理
- 灵活的处理组合选项
- 自动临时文件清理

 便捷处理函数
- quick_upscale_video() 一键视频放大
- auto_enhance_video() 智能自动增强
- 自动 Topaz 检测和配置
- 基于视频特征的参数选择
- 默认高质量设置

 预设参数系统
- VideoUpscaleParams::for_old_video() 老视频修复
- VideoUpscaleParams::for_game_content() 游戏内容
- VideoUpscaleParams::for_animation() 动画内容
- VideoUpscaleParams::for_portrait() 人像视频
- InterpolationParams::for_slow_motion() 慢动作
- InterpolationParams::for_animation() 动画插值

 完整示例和演示
- 创建 video_processing.rs 综合示例
- 展示所有视频处理场景
- 参数配置和模型选择演示
- 格式转换和组合处理演示
- 便捷函数使用演示

 技术特性
- 完整的 Topaz Video AI 集成
- 智能参数验证和错误处理
- 进度回调支持 (基础实现)
- 异步处理和资源管理
- 跨平台兼容性

 代码质量
- 所有测试通过 (6/6 单元测试 + 1 文档测试)
- 完整的错误处理和验证
- 内存安全的资源管理
- 清晰的 API 设计

 功能覆盖
-  视频超分辨率 (16 种模型)
-  帧插值 (4 种模型)
-  格式转换 (图像序列  视频)
-  组合处理流水线
-  便捷处理函数
-  智能参数预设

下一步: 开始阶段四 - 图片处理功能实现
2025-08-11 15:43:38 +08:00
..
examples feat: 完成 tvai 库视频处理功能 (阶段三) 2025-08-11 15:43:38 +08:00
src feat: 完成 tvai 库视频处理功能 (阶段三) 2025-08-11 15:43:38 +08:00
Cargo.toml feat: 完成 tvai 库基础架构搭建 (阶段一) 2025-08-11 15:12:44 +08:00
README.md feat: 完成 tvai 库基础架构搭建 (阶段一) 2025-08-11 15:12:44 +08:00

README.md

TVAI - Topaz Video AI Integration Library

A Rust library for integrating with Topaz Video AI to perform video and image enhancement including super-resolution upscaling and frame interpolation.

Features

  • 🎬 Video Super-Resolution: Upscale videos using AI models
  • 🎞️ Frame Interpolation: Create smooth slow motion effects
  • 🖼️ Image Upscaling: Enhance image resolution and quality
  • GPU Acceleration: CUDA and hardware encoding support
  • 🔧 Multiple AI Models: 16 upscaling and 4 interpolation models
  • 📦 Batch Processing: Process multiple files efficiently
  • 🎛️ Flexible Configuration: Fine-tune processing parameters

Requirements

  • Topaz Video AI installed
  • Rust 1.70+
  • FFmpeg (included with Topaz Video AI)
  • Optional: CUDA-compatible GPU for acceleration

Installation

Add this to your Cargo.toml:

[dependencies]
tvai = "0.1.0"

Quick Start

Video Upscaling

use tvai::*;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Quick 2x upscaling
    quick_upscale_video(
        std::path::Path::new("input.mp4"),
        std::path::Path::new("output.mp4"),
        2.0,
    ).await?;
    
    Ok(())
}

Image Upscaling

use tvai::*;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Quick 4x image upscaling
    quick_upscale_image(
        std::path::Path::new("photo.jpg"),
        std::path::Path::new("photo_4x.png"),
        4.0,
    ).await?;
    
    Ok(())
}

Advanced Usage

use tvai::*;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Detect Topaz installation
    let topaz_path = detect_topaz_installation()
        .ok_or("Topaz Video AI not found")?;
    
    // Create configuration
    let config = TvaiConfig::builder()
        .topaz_path(topaz_path)
        .use_gpu(true)
        .build()?;
    
    // Create processor
    let processor = TvaiProcessor::new(config)?;
    
    // Custom upscaling parameters
    let params = VideoUpscaleParams {
        scale_factor: 2.0,
        model: UpscaleModel::Iris3,
        compression: 0.0,
        blend: 0.1,
        quality_preset: QualityPreset::HighQuality,
    };
    
    // Process video
    let result = processor.upscale_video(
        std::path::Path::new("input.mp4"),
        std::path::Path::new("output.mp4"),
        params,
    ).await?;
    
    println!("Processing completed in {:?}", result.processing_time);
    Ok(())
}

AI Models

Upscaling Models

  • Iris v3 - Best general purpose model
  • Nyx v3 - Optimized for portraits
  • Theia Fidelity v4 - Old content restoration
  • Gaia HQ v5 - Game/CG content
  • Proteus v4 - Problem footage repair
  • And more...

Interpolation Models

  • Apollo v8 - High quality interpolation
  • Chronos v2 - Animation content
  • Apollo Fast v1 - Fast processing
  • Chronos Fast v3 - Fast animation

Presets

The library includes optimized presets for common use cases:

// Video presets
let old_video_params = VideoUpscaleParams::for_old_video();
let game_params = VideoUpscaleParams::for_game_content();
let animation_params = VideoUpscaleParams::for_animation();
let portrait_params = VideoUpscaleParams::for_portrait();

// Image presets
let photo_params = ImageUpscaleParams::for_photo();
let artwork_params = ImageUpscaleParams::for_artwork();
let screenshot_params = ImageUpscaleParams::for_screenshot();

System Detection

// Detect Topaz installation
let topaz_path = detect_topaz_installation();

// Check GPU support
let gpu_info = detect_gpu_support();

// Check FFmpeg availability
let ffmpeg_info = detect_ffmpeg();

Error Handling

The library uses the anyhow crate for error handling:

use tvai::*;

match quick_upscale_video(input, output, 2.0).await {
    Ok(result) => println!("Success: {:?}", result),
    Err(TvaiError::TopazNotFound(path)) => {
        eprintln!("Topaz not found at: {}", path);
    },
    Err(TvaiError::FfmpegError(msg)) => {
        eprintln!("FFmpeg error: {}", msg);
    },
    Err(e) => eprintln!("Other error: {}", e),
}

Development Status

This library is currently in development. The following features are planned:

  • Basic project structure
  • FFmpeg management
  • Core processor framework
  • Video upscaling implementation
  • Frame interpolation implementation
  • Image upscaling implementation
  • Batch processing
  • Progress callbacks
  • Comprehensive testing

License

MIT License - see LICENSE file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.