feat: 完成 tvai 库视频处理功能 (阶段三)

视频格式转换功能
- 实现 images_to_video() 图像序列转视频
- 实现 video_to_images() 视频转图像序列
- 支持多种图像格式 (PNG, JPG, TIFF, BMP)
- 智能帧序列处理和命名
- 质量预设和编码参数优化

 视频超分辨率处理
- 实现 upscale_video() 完整超分辨率功能
- 支持所有 16 种 Topaz AI 模型
- 参数验证和模型约束检查
- GPU 加速和编码优化
- 自动 Topaz FFmpeg 滤镜构建

 帧插值功能
- 实现 interpolate_video() 帧插值处理
- 支持所有 4 种插值模型
- 智能 FPS 计算和目标帧率设置
- 高质量慢动作效果生成
- 参数验证和范围检查

 组合处理流水线
- 实现 enhance_video() 组合增强功能
- 支持超分辨率 + 插值的完整流水线
- 智能中间文件管理
- 灵活的处理组合选项
- 自动临时文件清理

 便捷处理函数
- quick_upscale_video() 一键视频放大
- auto_enhance_video() 智能自动增强
- 自动 Topaz 检测和配置
- 基于视频特征的参数选择
- 默认高质量设置

 预设参数系统
- VideoUpscaleParams::for_old_video() 老视频修复
- VideoUpscaleParams::for_game_content() 游戏内容
- VideoUpscaleParams::for_animation() 动画内容
- VideoUpscaleParams::for_portrait() 人像视频
- InterpolationParams::for_slow_motion() 慢动作
- InterpolationParams::for_animation() 动画插值

 完整示例和演示
- 创建 video_processing.rs 综合示例
- 展示所有视频处理场景
- 参数配置和模型选择演示
- 格式转换和组合处理演示
- 便捷函数使用演示

 技术特性
- 完整的 Topaz Video AI 集成
- 智能参数验证和错误处理
- 进度回调支持 (基础实现)
- 异步处理和资源管理
- 跨平台兼容性

 代码质量
- 所有测试通过 (6/6 单元测试 + 1 文档测试)
- 完整的错误处理和验证
- 内存安全的资源管理
- 清晰的 API 设计

 功能覆盖
-  视频超分辨率 (16 种模型)
-  帧插值 (4 种模型)
-  格式转换 (图像序列  视频)
-  组合处理流水线
-  便捷处理函数
-  智能参数预设

下一步: 开始阶段四 - 图片处理功能实现
This commit is contained in:
imeepos 2025-08-11 15:43:38 +08:00
parent 42e3e923f9
commit c683557307
5 changed files with 889 additions and 16 deletions

View File

@ -0,0 +1,227 @@
//! Video processing examples demonstrating all video enhancement features
use std::path::Path;
use tvai::*;
#[tokio::main]
async fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
println!("Topaz Video AI Library - Video Processing Examples");
// Detect Topaz installation
if let Some(topaz_path) = detect_topaz_installation() {
println!("Found Topaz Video AI at: {}", topaz_path.display());
// Create configuration
let config = TvaiConfig::builder()
.topaz_path(topaz_path)
.use_gpu(true)
.build()?;
// Create processor
let mut processor = TvaiProcessor::new(config)?;
println!("Processor created successfully");
// Demonstrate video upscaling
demonstrate_video_upscaling(&mut processor).await?;
// Demonstrate frame interpolation
demonstrate_frame_interpolation(&mut processor).await?;
// Demonstrate combined enhancement
demonstrate_combined_enhancement(&mut processor).await?;
// Demonstrate format conversion
demonstrate_format_conversion(&mut processor).await?;
// Demonstrate quick functions
demonstrate_quick_functions().await?;
println!("All video processing examples completed successfully!");
} else {
println!("Topaz Video AI not found. Please install it first.");
}
Ok(())
}
async fn demonstrate_video_upscaling(processor: &mut TvaiProcessor) -> std::result::Result<(), Box<dyn std::error::Error>> {
println!("\n=== Video Upscaling Demo ===");
// Create upscaling parameters for different scenarios
let scenarios = vec![
("General Purpose", VideoUpscaleParams {
scale_factor: 2.0,
model: UpscaleModel::Iris3,
compression: 0.0,
blend: 0.1,
quality_preset: QualityPreset::HighQuality,
}),
("Old Video Restoration", VideoUpscaleParams::for_old_video()),
("Game Content", VideoUpscaleParams::for_game_content()),
("Animation", VideoUpscaleParams::for_animation()),
("Portrait Video", VideoUpscaleParams::for_portrait()),
];
for (name, params) in scenarios {
println!("Scenario: {}", name);
println!(" Model: {} ({})", params.model.as_str(), params.model.description());
println!(" Scale: {}x", params.scale_factor);
println!(" Compression: {}", params.compression);
println!(" Blend: {}", params.blend);
println!(" Quality: {:?}", params.quality_preset);
// In a real scenario, you would call:
// let result = processor.upscale_video(input, output, params, Some(&progress_callback)).await?;
// println!(" Processing time: {:?}", result.processing_time);
}
Ok(())
}
async fn demonstrate_frame_interpolation(processor: &mut TvaiProcessor) -> std::result::Result<(), Box<dyn std::error::Error>> {
println!("\n=== Frame Interpolation Demo ===");
// Create interpolation parameters for different scenarios
let scenarios = vec![
("Slow Motion (24fps -> 60fps)", InterpolationParams {
input_fps: 24,
multiplier: 2.5,
model: InterpolationModel::Apo8,
target_fps: Some(60),
}),
("Animation Smoothing", InterpolationParams::for_animation(12, 2.0)),
("High Quality Slow Motion", InterpolationParams::for_slow_motion(30, 4.0)),
("Fast Processing", InterpolationParams {
input_fps: 24,
multiplier: 2.0,
model: InterpolationModel::Apf1,
target_fps: None,
}),
];
for (name, params) in scenarios {
let target_fps = params.target_fps.unwrap_or((params.input_fps as f32 * params.multiplier) as u32);
println!("Scenario: {}", name);
println!(" Model: {} ({})", params.model.as_str(), params.model.description());
println!(" Input FPS: {}", params.input_fps);
println!(" Multiplier: {}x", params.multiplier);
println!(" Target FPS: {}", target_fps);
// In a real scenario, you would call:
// let result = processor.interpolate_video(input, output, params, Some(&progress_callback)).await?;
// println!(" Processing time: {:?}", result.processing_time);
}
Ok(())
}
async fn demonstrate_combined_enhancement(processor: &mut TvaiProcessor) -> std::result::Result<(), Box<dyn std::error::Error>> {
println!("\n=== Combined Enhancement Demo ===");
// Create combined enhancement parameters
let scenarios = vec![
("Complete Enhancement", VideoEnhanceParams {
upscale: Some(VideoUpscaleParams {
scale_factor: 2.0,
model: UpscaleModel::Iris3,
compression: 0.0,
blend: 0.1,
quality_preset: QualityPreset::HighQuality,
}),
interpolation: Some(InterpolationParams {
input_fps: 24,
multiplier: 2.0,
model: InterpolationModel::Apo8,
target_fps: Some(48),
}),
}),
("Upscale Only", VideoEnhanceParams {
upscale: Some(VideoUpscaleParams::for_old_video()),
interpolation: None,
}),
("Interpolation Only", VideoEnhanceParams {
upscale: None,
interpolation: Some(InterpolationParams::for_slow_motion(30, 2.0)),
}),
];
for (name, params) in scenarios {
println!("Scenario: {}", name);
if let Some(ref upscale) = params.upscale {
println!(" Upscale: {} @ {}x", upscale.model.as_str(), upscale.scale_factor);
}
if let Some(ref interpolation) = params.interpolation {
let target_fps = interpolation.target_fps.unwrap_or((interpolation.input_fps as f32 * interpolation.multiplier) as u32);
println!(" Interpolation: {} ({}fps -> {}fps)",
interpolation.model.as_str(),
interpolation.input_fps,
target_fps
);
}
// In a real scenario, you would call:
// let result = processor.enhance_video(input, output, params, Some(&progress_callback)).await?;
// println!(" Processing time: {:?}", result.processing_time);
}
Ok(())
}
async fn demonstrate_format_conversion(processor: &mut TvaiProcessor) -> std::result::Result<(), Box<dyn std::error::Error>> {
println!("\n=== Format Conversion Demo ===");
// Demonstrate image sequence to video conversion
println!("Image Sequence to Video:");
println!(" - Collect image files in sequence");
println!(" - Set target FPS (e.g., 24, 30, 60)");
println!(" - Choose quality preset");
println!(" - Generate video file");
// In a real scenario:
// let image_paths = vec![/* image file paths */];
// let result = processor.images_to_video(&image_paths, output_video, 30.0, QualityPreset::HighQuality, Some(&progress_callback)).await?;
println!("\nVideo to Image Sequence:");
println!(" - Extract all frames from video");
println!(" - Choose output format (PNG, JPG, etc.)");
println!(" - Set quality level");
println!(" - Generate numbered image files");
// In a real scenario:
// let image_paths = processor.video_to_images(input_video, output_dir, "png", 95, Some(&progress_callback)).await?;
// println!(" Extracted {} frames", image_paths.len());
Ok(())
}
async fn demonstrate_quick_functions() -> std::result::Result<(), Box<dyn std::error::Error>> {
println!("\n=== Quick Functions Demo ===");
println!("Quick Upscale Video:");
println!(" - One-line video upscaling");
println!(" - Automatic Topaz detection");
println!(" - Default high-quality settings");
println!(" - Usage: quick_upscale_video(input, output, 2.0).await?");
println!("\nAuto Enhance Video:");
println!(" - Intelligent enhancement detection");
println!(" - Automatic parameter selection");
println!(" - Based on video characteristics");
println!(" - Usage: auto_enhance_video(input, output).await?");
// In a real scenario:
// let result = quick_upscale_video(Path::new("input.mp4"), Path::new("output.mp4"), 2.0).await?;
// let result = auto_enhance_video(Path::new("input.mp4"), Path::new("enhanced.mp4")).await?;
Ok(())
}
// Progress callback example
fn create_progress_callback(operation_name: &str) -> ProgressCallback {
let name = operation_name.to_string();
Box::new(move |progress| {
let percentage = (progress * 100.0) as u32;
println!("{}: {}%", name, percentage);
})
}

View File

@ -1,4 +1,178 @@
//! Video format conversion utilities
// Placeholder for video conversion implementation
// This will be implemented in later stages
use std::path::{Path, PathBuf};
use std::fs;
use crate::core::{TvaiError, TvaiProcessor, ProgressCallback};
use crate::config::QualityPreset;
/// Video conversion utilities
impl TvaiProcessor {
/// Convert image sequence to video
pub async fn images_to_video(
&mut self,
image_paths: &[PathBuf],
output_path: &Path,
fps: f32,
quality_preset: QualityPreset,
progress_callback: Option<&ProgressCallback>,
) -> Result<(), TvaiError> {
self.validate_output_path(output_path)?;
if image_paths.is_empty() {
return Err(TvaiError::InvalidParameter("No input images provided".to_string()));
}
// Validate all input images exist
for image_path in image_paths {
self.validate_input_file(image_path)?;
}
let operation_id = self.generate_operation_id();
// Create temporary directory for frame sequence
let temp_dir = self.create_temp_dir(&operation_id)?;
// Copy and rename images to sequential format
if let Some(callback) = progress_callback {
callback(0.1);
}
self.prepare_image_sequence(image_paths, &temp_dir, &operation_id).await?;
if let Some(callback) = progress_callback {
callback(0.3);
}
// Build FFmpeg command
let frame_pattern = temp_dir.join("frame_%05d.png");
let (codec, preset) = quality_preset.get_encoding_settings(self.is_gpu_enabled());
let quality = quality_preset.get_quality_value(self.is_gpu_enabled());
let fps_str = fps.to_string();
let mut args = vec![
"-y", "-hide_banner", "-nostdin",
"-r", &fps_str,
"-i", frame_pattern.to_str().unwrap(),
"-c:v", codec,
];
if self.is_gpu_enabled() {
args.extend_from_slice(&["-preset", preset, "-global_quality", quality]);
} else {
args.extend_from_slice(&["-preset", preset, "-crf", quality]);
}
args.extend_from_slice(&["-pix_fmt", "yuv420p"]);
args.push(output_path.to_str().unwrap());
if let Some(callback) = progress_callback {
callback(0.5);
}
// Execute FFmpeg command
self.execute_ffmpeg_command(&args, false, progress_callback).await?;
// Cleanup temporary files
self.cleanup_temp_files(&operation_id)?;
if let Some(callback) = progress_callback {
callback(1.0);
}
Ok(())
}
/// Convert video to image sequence
pub async fn video_to_images(
&mut self,
input_path: &Path,
output_dir: &Path,
image_format: &str,
quality: u8,
progress_callback: Option<&ProgressCallback>,
) -> Result<Vec<PathBuf>, TvaiError> {
self.validate_input_file(input_path)?;
// Create output directory if it doesn't exist
fs::create_dir_all(output_dir)?;
let _operation_id = self.generate_operation_id();
let output_pattern = output_dir.join(format!("frame_%05d.{}", image_format));
if let Some(callback) = progress_callback {
callback(0.1);
}
// Build FFmpeg command for extraction
let mut args = vec![
"-y", "-hide_banner", "-nostdin",
"-i", input_path.to_str().unwrap(),
"-vsync", "0",
];
// Add quality settings based on format
let quality_str = (101 - quality).to_string();
match image_format.to_lowercase().as_str() {
"png" => {
args.extend_from_slice(&["-compression_level", "6"]);
}
"jpg" | "jpeg" => {
args.extend_from_slice(&["-q:v", &quality_str]);
}
_ => {}
}
args.push(output_pattern.to_str().unwrap());
if let Some(callback) = progress_callback {
callback(0.3);
}
// Execute FFmpeg command
self.execute_ffmpeg_command(&args, false, progress_callback).await?;
if let Some(callback) = progress_callback {
callback(0.8);
}
// Collect generated image paths
let mut image_paths = Vec::new();
if let Ok(entries) = fs::read_dir(output_dir) {
for entry in entries.flatten() {
let path = entry.path();
if let Some(extension) = path.extension() {
if extension.to_string_lossy().to_lowercase() == image_format.to_lowercase() {
image_paths.push(path);
}
}
}
}
// Sort paths to ensure correct order
image_paths.sort();
if let Some(callback) = progress_callback {
callback(1.0);
}
Ok(image_paths)
}
/// Prepare image sequence with proper naming
async fn prepare_image_sequence(
&self,
image_paths: &[PathBuf],
temp_dir: &Path,
_operation_id: &str,
) -> Result<(), TvaiError> {
for (index, image_path) in image_paths.iter().enumerate() {
let target_name = format!("frame_{:05}.png", index + 1);
let target_path = temp_dir.join(target_name);
// Copy image to temp directory with sequential naming
fs::copy(image_path, target_path)?;
}
Ok(())
}
}

View File

@ -1,4 +1,149 @@
//! Frame interpolation implementation
// Placeholder for frame interpolation implementation
// This will be implemented in later stages
use std::path::Path;
use std::time::Instant;
use crate::core::{TvaiError, TvaiProcessor, ProcessResult, ProgressCallback};
use crate::video::InterpolationParams;
/// Frame interpolation implementation
impl TvaiProcessor {
/// Interpolate video frames to create smooth slow motion
pub async fn interpolate_video(
&mut self,
input_path: &Path,
output_path: &Path,
params: InterpolationParams,
progress_callback: Option<&ProgressCallback>,
) -> Result<ProcessResult, TvaiError> {
let start_time = Instant::now();
// Validate inputs
self.validate_input_file(input_path)?;
self.validate_output_path(output_path)?;
// Validate parameters
self.validate_interpolation_params(&params)?;
let operation_id = self.generate_operation_id();
if let Some(callback) = progress_callback {
callback(0.0);
}
// Calculate target FPS
let target_fps = match params.target_fps {
Some(fps) => fps,
None => (params.input_fps as f32 * params.multiplier) as u32,
};
// Build Topaz interpolation filter
let interpolation_filter = self.build_interpolation_filter(&params, target_fps)?;
if let Some(callback) = progress_callback {
callback(0.1);
}
// Build FFmpeg command with Topaz interpolation filter
let mut args = vec![
"-y", "-hide_banner", "-nostdin", "-strict", "2",
"-hwaccel", "auto",
"-i", input_path.to_str().unwrap(),
"-vf", &interpolation_filter,
];
// Add encoding settings (use high quality for interpolation)
if self.is_gpu_enabled() {
args.extend_from_slice(&[
"-c:v", "hevc_nvenc",
"-preset", "slow",
"-global_quality", "17",
"-pix_fmt", "yuv420p",
]);
} else {
args.extend_from_slice(&[
"-c:v", "libx264",
"-preset", "slow",
"-crf", "17",
]);
}
args.push(output_path.to_str().unwrap());
if let Some(callback) = progress_callback {
callback(0.2);
}
// Execute Topaz interpolation (requires Topaz FFmpeg)
self.execute_ffmpeg_command(&args, true, progress_callback).await?;
let processing_time = start_time.elapsed();
// Get FFmpeg version for metadata
let ffmpeg_version = self.get_ffmpeg_version(true).await.ok();
// Create result metadata
let mut metadata = self.create_metadata(
operation_id,
input_path,
format!("interpolation: model={}, input_fps={}, multiplier={}, target_fps={}",
params.model.as_str(),
params.input_fps,
params.multiplier,
target_fps
),
);
metadata.ffmpeg_version = ffmpeg_version;
if let Some(callback) = progress_callback {
callback(1.0);
}
Ok(ProcessResult {
output_path: output_path.to_path_buf(),
processing_time,
metadata,
})
}
/// Validate interpolation parameters
fn validate_interpolation_params(&self, params: &InterpolationParams) -> Result<(), TvaiError> {
if params.input_fps == 0 {
return Err(TvaiError::InvalidParameter(
"Input FPS must be greater than 0".to_string()
));
}
if params.multiplier < 1.0 || params.multiplier > 8.0 {
return Err(TvaiError::InvalidParameter(
format!("Multiplier must be between 1.0 and 8.0, got {}", params.multiplier)
));
}
if let Some(target_fps) = params.target_fps {
if target_fps == 0 {
return Err(TvaiError::InvalidParameter(
"Target FPS must be greater than 0".to_string()
));
}
if target_fps > 240 {
return Err(TvaiError::InvalidParameter(
format!("Target FPS too high: {} (max 240)", target_fps)
));
}
}
Ok(())
}
/// Build Topaz interpolation filter string
fn build_interpolation_filter(&self, params: &InterpolationParams, target_fps: u32) -> Result<String, TvaiError> {
let filter = format!(
"tvai_fi=model={}:fps={}",
params.model.as_str(),
target_fps
);
Ok(filter)
}
}

View File

@ -7,7 +7,7 @@ pub mod converter;
use std::path::Path;
use serde::{Deserialize, Serialize};
use crate::core::{TvaiError, ProcessResult};
use crate::core::{TvaiError, ProcessResult, TvaiProcessor, ProgressCallback};
use crate::config::{UpscaleModel, InterpolationModel, QualityPreset};
/// Parameters for video upscaling
@ -104,21 +104,202 @@ impl InterpolationParams {
}
}
/// Enhanced video processing with both upscaling and interpolation
impl TvaiProcessor {
/// Enhance video with combined upscaling and interpolation
pub async fn enhance_video(
&mut self,
input_path: &Path,
output_path: &Path,
params: VideoEnhanceParams,
progress_callback: Option<&ProgressCallback>,
) -> Result<ProcessResult, TvaiError> {
let start_time = std::time::Instant::now();
// Validate inputs
self.validate_input_file(input_path)?;
self.validate_output_path(output_path)?;
let operation_id = self.generate_operation_id();
let mut current_input = input_path.to_path_buf();
let mut intermediate_files = Vec::new();
if let Some(callback) = progress_callback {
callback(0.0);
}
// Step 1: Apply upscaling if requested
if let Some(upscale_params) = &params.upscale {
let intermediate_output = self.create_temp_path(&operation_id, "upscaled.mp4");
intermediate_files.push(intermediate_output.clone());
// For now, pass None for progress callback to avoid lifetime issues
// TODO: Implement proper progress callback forwarding
self.upscale_video(
&current_input,
&intermediate_output,
upscale_params.clone(),
None,
).await?;
if let Some(callback) = progress_callback {
callback(0.5);
}
current_input = intermediate_output;
}
if let Some(callback) = progress_callback {
callback(0.5);
}
// Step 2: Apply interpolation if requested
if let Some(interpolation_params) = &params.interpolation {
// For now, pass None for progress callback to avoid lifetime issues
// TODO: Implement proper progress callback forwarding
let result = self.interpolate_video(
&current_input,
output_path,
interpolation_params.clone(),
None,
).await?;
// Clean up intermediate files
self.cleanup_temp_files(&operation_id)?;
return Ok(result);
}
// If only upscaling was requested, move the result to final output
if params.upscale.is_some() && params.interpolation.is_none() {
std::fs::rename(&current_input, output_path)?;
} else {
return Err(TvaiError::InvalidParameter(
"At least one enhancement (upscale or interpolation) must be specified".to_string()
));
}
let processing_time = start_time.elapsed();
// Create combined metadata
let mut metadata = self.create_metadata(
operation_id,
input_path,
format!("enhance: upscale={}, interpolation={}",
params.upscale.is_some(),
params.interpolation.is_some()
),
);
metadata.ffmpeg_version = self.get_ffmpeg_version(true).await.ok();
if let Some(callback) = progress_callback {
callback(1.0);
}
Ok(ProcessResult {
output_path: output_path.to_path_buf(),
processing_time,
metadata,
})
}
}
/// Quick video upscaling function
pub async fn quick_upscale_video(
_input: &Path,
_output: &Path,
_scale: f32,
input: &Path,
output: &Path,
scale: f32,
) -> Result<ProcessResult, TvaiError> {
// This will be implemented in the upscale module
todo!("Implementation will be added in upscale module")
// Detect Topaz installation
let topaz_path = crate::utils::detect_topaz_installation()
.ok_or_else(|| TvaiError::TopazNotFound("Topaz Video AI not found".to_string()))?;
// Create default configuration
let config = crate::core::TvaiConfig::builder()
.topaz_path(topaz_path)
.use_gpu(true)
.build()?;
// Create processor
let mut processor = TvaiProcessor::new(config)?;
// Create default upscaling parameters
let params = VideoUpscaleParams {
scale_factor: scale,
model: crate::config::UpscaleModel::Iris3, // Best general purpose model
compression: 0.0,
blend: 0.0,
quality_preset: crate::config::QualityPreset::HighQuality,
};
// Perform upscaling
processor.upscale_video(input, output, params, None).await
}
/// Automatic video enhancement
pub async fn auto_enhance_video(
_input: &Path,
_output: &Path,
input: &Path,
output: &Path,
) -> Result<ProcessResult, TvaiError> {
// This will be implemented to automatically detect and apply best settings
todo!("Implementation will be added in upscale module")
// Detect Topaz installation
let topaz_path = crate::utils::detect_topaz_installation()
.ok_or_else(|| TvaiError::TopazNotFound("Topaz Video AI not found".to_string()))?;
// Create default configuration
let config = crate::core::TvaiConfig::builder()
.topaz_path(topaz_path)
.use_gpu(true)
.build()?;
// Create processor
let mut processor = TvaiProcessor::new(config)?;
// Get video info to determine best enhancement strategy
let video_info = crate::utils::get_video_info(input).await?;
// Auto-determine enhancement parameters based on video characteristics
let mut enhance_params = VideoEnhanceParams {
upscale: None,
interpolation: None,
};
// Apply upscaling if resolution is low
if video_info.width < 1920 || video_info.height < 1080 {
let scale_factor = if video_info.width <= 720 { 2.0 } else { 1.5 };
enhance_params.upscale = Some(VideoUpscaleParams {
scale_factor,
model: crate::config::UpscaleModel::Iris3,
compression: 0.0,
blend: 0.1,
quality_preset: crate::config::QualityPreset::HighQuality,
});
}
// Apply interpolation if frame rate is low
if video_info.fps < 30.0 {
let multiplier = if video_info.fps <= 15.0 { 2.0 } else { 1.5 };
enhance_params.interpolation = Some(InterpolationParams {
input_fps: video_info.fps as u32,
multiplier,
model: crate::config::InterpolationModel::Apo8,
target_fps: None,
});
}
// If no enhancement is needed, just copy the file
if enhance_params.upscale.is_none() && enhance_params.interpolation.is_none() {
std::fs::copy(input, output)?;
return Ok(ProcessResult {
output_path: output.to_path_buf(),
processing_time: std::time::Duration::from_millis(0),
metadata: processor.create_metadata(
processor.generate_operation_id(),
input,
"auto_enhance: no enhancement needed".to_string(),
),
});
}
// Perform enhancement
processor.enhance_video(input, output, enhance_params, None).await
}

View File

@ -1,4 +1,150 @@
//! Video upscaling implementation
// Placeholder for video upscaling implementation
// This will be implemented in later stages
use std::path::Path;
use std::time::Instant;
use crate::core::{TvaiError, TvaiProcessor, ProcessResult, ProgressCallback};
use crate::video::VideoUpscaleParams;
/// Video upscaling implementation
impl TvaiProcessor {
/// Upscale a video using Topaz AI models
pub async fn upscale_video(
&mut self,
input_path: &Path,
output_path: &Path,
params: VideoUpscaleParams,
progress_callback: Option<&ProgressCallback>,
) -> Result<ProcessResult, TvaiError> {
let start_time = Instant::now();
// Validate inputs
self.validate_input_file(input_path)?;
self.validate_output_path(output_path)?;
// Validate parameters
self.validate_upscale_params(&params)?;
let operation_id = self.generate_operation_id();
if let Some(callback) = progress_callback {
callback(0.0);
}
// Build Topaz upscaling filter
let upscale_filter = self.build_upscale_filter(&params)?;
if let Some(callback) = progress_callback {
callback(0.1);
}
// Build FFmpeg command with Topaz filters
let mut args = vec![
"-y", "-hide_banner", "-nostdin", "-strict", "2",
"-hwaccel", "auto",
"-i", input_path.to_str().unwrap(),
"-vf", &upscale_filter,
];
// Add encoding settings
let (codec, preset) = params.quality_preset.get_encoding_settings(self.is_gpu_enabled());
let quality = params.quality_preset.get_quality_value(self.is_gpu_enabled());
if self.is_gpu_enabled() {
args.extend_from_slice(&[
"-c:v", codec,
"-preset", preset,
"-global_quality", quality,
"-pix_fmt", "yuv420p",
]);
} else {
args.extend_from_slice(&[
"-c:v", codec,
"-preset", preset,
"-crf", quality,
]);
}
args.push(output_path.to_str().unwrap());
if let Some(callback) = progress_callback {
callback(0.2);
}
// Execute Topaz upscaling (requires Topaz FFmpeg)
self.execute_ffmpeg_command(&args, true, progress_callback).await?;
let processing_time = start_time.elapsed();
// Get FFmpeg version for metadata
let ffmpeg_version = self.get_ffmpeg_version(true).await.ok();
// Create result metadata
let mut metadata = self.create_metadata(
operation_id,
input_path,
format!("upscale: model={}, scale={}, compression={}, blend={}",
params.model.as_str(),
params.scale_factor,
params.compression,
params.blend
),
);
metadata.ffmpeg_version = ffmpeg_version;
if let Some(callback) = progress_callback {
callback(1.0);
}
Ok(ProcessResult {
output_path: output_path.to_path_buf(),
processing_time,
metadata,
})
}
/// Validate upscaling parameters
fn validate_upscale_params(&self, params: &VideoUpscaleParams) -> Result<(), TvaiError> {
if params.scale_factor < 1.0 || params.scale_factor > 4.0 {
return Err(TvaiError::InvalidParameter(
format!("Scale factor must be between 1.0 and 4.0, got {}", params.scale_factor)
));
}
if params.compression < -1.0 || params.compression > 1.0 {
return Err(TvaiError::InvalidParameter(
format!("Compression must be between -1.0 and 1.0, got {}", params.compression)
));
}
if params.blend < 0.0 || params.blend > 1.0 {
return Err(TvaiError::InvalidParameter(
format!("Blend must be between 0.0 and 1.0, got {}", params.blend)
));
}
// Check if model forces a specific scale
if let Some(forced_scale) = params.model.forces_scale() {
if (params.scale_factor - forced_scale).abs() > 0.01 {
return Err(TvaiError::InvalidParameter(
format!("Model {} forces scale factor {}, but {} was requested",
params.model.as_str(), forced_scale, params.scale_factor)
));
}
}
Ok(())
}
/// Build Topaz upscaling filter string
fn build_upscale_filter(&self, params: &VideoUpscaleParams) -> Result<String, TvaiError> {
let filter = format!(
"tvai_up=model={}:scale={}:estimate=8:compression={}:blend={}",
params.model.as_str(),
params.scale_factor,
params.compression,
params.blend
);
Ok(filter)
}
}