37 lines
1.1 KiB
Python
37 lines
1.1 KiB
Python
import os.path
|
|
import uuid
|
|
|
|
import torch
|
|
import torchvision
|
|
|
|
|
|
class SaveImagePath:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image_path":("IMAGE", {"forceInput": True}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("STRING",)
|
|
|
|
FUNCTION = "load"
|
|
|
|
CATEGORY = "不忘科技-自定义节点🚩"
|
|
|
|
def load(self, image_path:torch.Tensor):
|
|
image_path = image_path.float()
|
|
# 假设数据范围在 [0, 255],进行归一化
|
|
image_path = image_path / 255.0
|
|
# 检查并调整形状(这里只是示例,具体调整需根据实际情况)
|
|
if len(image_path.shape) == 3:
|
|
image_path = image_path.unsqueeze(0) # 添加批次维度
|
|
u = uuid.uuid4()
|
|
p = os.path.join(os.path.dirname(os.path.abspath(__file__)), "output", "%s.jpg" % str(u))
|
|
torchvision.utils.save_image(image_path, p)
|
|
# u = uuid.uuid4()
|
|
# p = os.path.join(os.path.dirname(os.path.abspath(__file__)),"output","%s.jpg" % str(u))
|
|
# torchvision.utils.save_image(image_path, p)
|
|
return (p,)
|