import os.path import uuid import torch import torchvision class SaveImagePath: @classmethod def INPUT_TYPES(s): return { "required": { "image_path":("IMAGE", {"forceInput": True}), } } RETURN_TYPES = ("STRING",) FUNCTION = "load" CATEGORY = "不忘科技-自定义节点🚩" def load(self, image_path:torch.Tensor): image_path = image_path.float() # 假设数据范围在 [0, 255],进行归一化 image_path = image_path / 255.0 # 检查并调整形状(这里只是示例,具体调整需根据实际情况) if len(image_path.shape) == 3: image_path = image_path.unsqueeze(0) # 添加批次维度 u = uuid.uuid4() p = os.path.join(os.path.dirname(os.path.abspath(__file__)), "output", "%s.jpg" % str(u)) torchvision.utils.save_image(image_path, p) # u = uuid.uuid4() # p = os.path.join(os.path.dirname(os.path.abspath(__file__)),"output","%s.jpg" % str(u)) # torchvision.utils.save_image(image_path, p) return (p,)