235 lines
10 KiB
Python
235 lines
10 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Scene Detection CLI - Refactored
|
|
场景检测命令行工具 - 重构版
|
|
|
|
使用重构后的场景检测模块,代码更简洁、模块化更好。
|
|
"""
|
|
|
|
import typer
|
|
from pathlib import Path
|
|
from typing import Optional, List
|
|
from rich.console import Console
|
|
from rich.table import Table
|
|
|
|
from python_core.scene_detection import (
|
|
SceneDetector,
|
|
DetectorType,
|
|
OutputFormat
|
|
)
|
|
from python_core.utils.logger import logger
|
|
|
|
scene_detect = typer.Typer(help="场景检测工具 - 重构版")
|
|
console = Console()
|
|
|
|
@scene_detect.command("detect")
|
|
def detect(
|
|
video_path: Path = typer.Argument(..., help="视频文件路径"),
|
|
detector_type: DetectorType = typer.Option(DetectorType.CONTENT, "--detector", "-d", help="检测器类型"),
|
|
threshold: float = typer.Option(30.0, "--threshold", "-t", help="检测阈值"),
|
|
min_scene_length: float = typer.Option(1.0, "--min-length", "-m", help="最小场景长度(秒)"),
|
|
output: Optional[Path] = typer.Option(None, "--output", "-o", help="输出文件路径"),
|
|
output_format: OutputFormat = typer.Option(OutputFormat.JSON, "--format", "-f", help="输出格式"),
|
|
ai_analysis: bool = typer.Option(True, "--ai/--no-ai", help="启用/禁用AI分析"),
|
|
verbose: bool = typer.Option(False, "--verbose", "-v", help="详细输出")
|
|
):
|
|
"""使用LangGraph工作流进行场景检测"""
|
|
console.print(f"🔄 使用工作流检测视频: [bold blue]{video_path}[/bold blue]")
|
|
|
|
try:
|
|
# 创建检测器
|
|
detector = SceneDetector()
|
|
|
|
# 执行工作流检测
|
|
result = detector.detect_with_workflow(
|
|
video_path, detector_type, threshold, min_scene_length,
|
|
output, output_format, ai_analysis
|
|
)
|
|
|
|
# 显示结果
|
|
if result.get("workflow_state") == "completed":
|
|
detection_result = result.get("detection_result")
|
|
if detection_result and detection_result.success:
|
|
console.print(f"✅ 工作流完成: [bold green]{detection_result.total_scenes}[/bold green] 个场景")
|
|
console.print(f"📊 检测时间: {detection_result.detection_time:.2f}秒")
|
|
|
|
# 显示AI分析结果
|
|
ai_analysis_result = result.get("ai_analysis")
|
|
if ai_analysis_result and ai_analysis_result != "AI分析已禁用":
|
|
console.print("\n🧠 AI分析结果:")
|
|
console.print(ai_analysis_result[:500] + "..." if len(ai_analysis_result) > 500 else ai_analysis_result)
|
|
|
|
# 显示场景列表
|
|
if verbose:
|
|
_display_scenes_table(detection_result.scenes)
|
|
else:
|
|
console.print(f"❌ 检测失败: [bold red]{detection_result.error if detection_result else '未知错误'}[/bold red]")
|
|
raise typer.Exit(1)
|
|
else:
|
|
errors = result.get("errors", [])
|
|
error_msg = "; ".join(errors) if errors else "工作流执行失败"
|
|
console.print(f"❌ 工作流失败: [bold red]{error_msg}[/bold red]")
|
|
raise typer.Exit(1)
|
|
|
|
except Exception as e:
|
|
console.print(f"❌ 执行失败: [bold red]{str(e)}[/bold red]")
|
|
raise typer.Exit(1)
|
|
|
|
|
|
def _display_scenes_table(scenes):
|
|
"""显示场景表格"""
|
|
table = Table(title="检测到的场景")
|
|
table.add_column("场景", style="cyan")
|
|
table.add_column("开始时间", style="green")
|
|
table.add_column("结束时间", style="green")
|
|
table.add_column("时长", style="yellow")
|
|
|
|
for scene in scenes:
|
|
table.add_row(
|
|
str(scene.index + 1),
|
|
f"{scene.start_time:.2f}s",
|
|
f"{scene.end_time:.2f}s",
|
|
f"{scene.duration:.2f}s"
|
|
)
|
|
|
|
console.print(table)
|
|
|
|
|
|
@scene_detect.command("batch")
|
|
def batch_detect_and_split(
|
|
input_dir: Path = typer.Argument(..., help="包含视频文件的输入目录"),
|
|
output_dir: Path = typer.Argument(..., help="输出目录"),
|
|
detector_type: DetectorType = typer.Option(DetectorType.CONTENT, "--detector", "-d", help="检测器类型"),
|
|
threshold: float = typer.Option(30.0, "--threshold", "-t", help="检测阈值"),
|
|
min_scene_length: float = typer.Option(1.0, "--min-length", "-m", help="最小场景长度(秒)"),
|
|
output_format: OutputFormat = typer.Option(OutputFormat.JSON, "--format", "-f", help="输出格式"),
|
|
ai_analysis: bool = typer.Option(False, "--ai/--no-ai", help="启用/禁用AI分析"),
|
|
video_splitting: bool = typer.Option(True, "--split/--no-split", help="启用/禁用视频切分"),
|
|
max_concurrent: int = typer.Option(2, "--concurrent", "-c", help="最大并发数"),
|
|
continue_on_error: bool = typer.Option(True, "--continue/--stop-on-error", help="遇到错误时继续/停止"),
|
|
file_pattern: str = typer.Option("*.mp4", "--pattern", "-p", help="视频文件匹配模式"),
|
|
use_advanced_split: bool = typer.Option(True, "--advanced/--traditional", help="使用高效批量切分/传统逐个切分"),
|
|
split_quality: int = typer.Option(23, "--quality", "-q", help="切分质量 (CRF值, 18-28)"),
|
|
split_preset: str = typer.Option("fast", "--preset", help="编码预设 (ultrafast/fast/medium/slow)"),
|
|
max_duration: float = typer.Option(2.0, "--max-duration", "-d", help="最大视频时长限制(秒),超过将二次切分"),
|
|
verbose: bool = typer.Option(False, "--verbose", "-v", help="详细输出")
|
|
):
|
|
"""批量场景检测和视频切分"""
|
|
console.print(f"🔄 批量处理目录: [bold blue]{input_dir}[/bold blue]")
|
|
console.print(f"📂 输出目录: [bold blue]{output_dir}[/bold blue]")
|
|
|
|
try:
|
|
# 检查输入目录
|
|
if not input_dir.exists() or not input_dir.is_dir():
|
|
console.print(f"❌ 输入目录不存在或不是目录: [bold red]{input_dir}[/bold red]")
|
|
raise typer.Exit(1)
|
|
|
|
# 查找视频文件
|
|
video_extensions = ['*.mp4', '*.avi', '*.mov', '*.mkv', '*.wmv', '*.flv', '*.webm', '*.m4v']
|
|
|
|
video_files = []
|
|
if file_pattern in video_extensions:
|
|
# 使用指定的模式
|
|
video_files = list(input_dir.glob(file_pattern))
|
|
else:
|
|
# 使用自定义模式
|
|
video_files = list(input_dir.glob(file_pattern))
|
|
# 如果自定义模式没找到文件,尝试所有支持的格式
|
|
if not video_files:
|
|
for pattern in video_extensions:
|
|
video_files.extend(input_dir.glob(pattern))
|
|
|
|
if not video_files:
|
|
console.print(f"❌ 在目录中未找到视频文件: [bold red]{input_dir}[/bold red]")
|
|
console.print(f"💡 尝试的模式: {file_pattern}")
|
|
raise typer.Exit(1)
|
|
|
|
console.print(f"📹 找到 {len(video_files)} 个视频文件")
|
|
|
|
# 创建检测器
|
|
detector = SceneDetector()
|
|
|
|
# 执行批量处理
|
|
result = detector.batch_detect_and_split(
|
|
video_paths=video_files,
|
|
output_base_dir=output_dir,
|
|
detector_type=detector_type,
|
|
threshold=threshold,
|
|
min_scene_length=min_scene_length,
|
|
output_format=output_format,
|
|
enable_ai_analysis=ai_analysis,
|
|
enable_video_splitting=video_splitting,
|
|
max_concurrent=max_concurrent,
|
|
continue_on_error=continue_on_error,
|
|
use_advanced_split=use_advanced_split,
|
|
split_quality=split_quality,
|
|
split_preset=split_preset,
|
|
max_video_duration=max_duration
|
|
)
|
|
|
|
# 显示结果
|
|
if result.get("workflow_state") == "completed":
|
|
summary = result.get("batch_results", {})
|
|
console.print(f"\n✅ 批量处理完成!")
|
|
console.print(f"📊 处理统计:")
|
|
console.print(f" 总视频数: {summary.get('total_videos', 0)}")
|
|
console.print(f" 成功处理: {summary.get('completed_videos', 0)}")
|
|
console.print(f" 处理失败: {summary.get('failed_videos', 0)}")
|
|
console.print(f" 成功率: {summary.get('success_rate', 0):.1f}%")
|
|
|
|
if video_splitting:
|
|
tasks_data = summary.get('tasks', [])
|
|
if tasks_data:
|
|
total_scenes = sum(task.get('total_scenes', 0) for task in tasks_data)
|
|
total_splits = sum(task.get('split_count', 0) for task in tasks_data)
|
|
console.print(f" 总场景数: {total_scenes}")
|
|
console.print(f" 切分片段: {total_splits}")
|
|
else:
|
|
console.print(" ⚠️ 无任务数据")
|
|
|
|
# 显示详细结果
|
|
if verbose:
|
|
tasks = summary.get('tasks', [])
|
|
if tasks:
|
|
_display_batch_results_table(tasks)
|
|
else:
|
|
console.print(" ⚠️ 无详细任务数据可显示")
|
|
else:
|
|
console.print(f"❌ 批量处理失败")
|
|
errors = result.get("errors", [])
|
|
if errors:
|
|
for error in errors:
|
|
console.print(f" • {error}")
|
|
raise typer.Exit(1)
|
|
|
|
except Exception as e:
|
|
console.print(f"❌ 执行失败: [bold red]{str(e)}[/bold red]")
|
|
raise typer.Exit(1)
|
|
|
|
|
|
def _display_batch_results_table(tasks):
|
|
"""显示批量处理结果表格"""
|
|
table = Table(title="批量处理结果")
|
|
table.add_column("视频文件", style="cyan")
|
|
table.add_column("状态", style="green")
|
|
table.add_column("场景数", style="yellow")
|
|
table.add_column("切分数", style="blue")
|
|
table.add_column("处理时间", style="magenta")
|
|
table.add_column("错误", style="red")
|
|
|
|
for task in tasks:
|
|
video_name = Path(task["video_path"]).name
|
|
status = "✅ 成功" if task["status"] == "completed" else "❌ 失败"
|
|
scenes = str(task.get("total_scenes", 0))
|
|
splits = str(task.get("split_count", 0))
|
|
proc_time = f"{task.get('processing_time', 0):.1f}s"
|
|
error_text = task.get("error") or ""
|
|
error = error_text[:50] + "..." if len(error_text) > 50 else error_text
|
|
|
|
table.add_row(video_name, status, scenes, splits, proc_time, error)
|
|
|
|
console.print(table)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
scene_detect() |