#!/usr/bin/env python3 """ Scene Detection CLI - Refactored 场景检测命令行工具 - 重构版 使用重构后的场景检测模块,代码更简洁、模块化更好。 """ import typer from pathlib import Path from typing import Optional, List from rich.console import Console from rich.table import Table from python_core.scene_detection import ( SceneDetector, DetectorType, OutputFormat ) from python_core.utils.logger import logger scene_detect = typer.Typer(help="场景检测工具 - 重构版") console = Console() @scene_detect.command("detect") def detect( video_path: Path = typer.Argument(..., help="视频文件路径"), detector_type: DetectorType = typer.Option(DetectorType.CONTENT, "--detector", "-d", help="检测器类型"), threshold: float = typer.Option(30.0, "--threshold", "-t", help="检测阈值"), min_scene_length: float = typer.Option(1.0, "--min-length", "-m", help="最小场景长度(秒)"), output: Optional[Path] = typer.Option(None, "--output", "-o", help="输出文件路径"), output_format: OutputFormat = typer.Option(OutputFormat.JSON, "--format", "-f", help="输出格式"), ai_analysis: bool = typer.Option(True, "--ai/--no-ai", help="启用/禁用AI分析"), verbose: bool = typer.Option(False, "--verbose", "-v", help="详细输出") ): """使用LangGraph工作流进行场景检测""" console.print(f"🔄 使用工作流检测视频: [bold blue]{video_path}[/bold blue]") try: # 创建检测器 detector = SceneDetector() # 执行工作流检测 result = detector.detect_with_workflow( video_path, detector_type, threshold, min_scene_length, output, output_format, ai_analysis ) # 显示结果 if result.get("workflow_state") == "completed": detection_result = result.get("detection_result") if detection_result and detection_result.success: console.print(f"✅ 工作流完成: [bold green]{detection_result.total_scenes}[/bold green] 个场景") console.print(f"📊 检测时间: {detection_result.detection_time:.2f}秒") # 显示AI分析结果 ai_analysis_result = result.get("ai_analysis") if ai_analysis_result and ai_analysis_result != "AI分析已禁用": console.print("\n🧠 AI分析结果:") console.print(ai_analysis_result[:500] + "..." if len(ai_analysis_result) > 500 else ai_analysis_result) # 显示场景列表 if verbose: _display_scenes_table(detection_result.scenes) else: console.print(f"❌ 检测失败: [bold red]{detection_result.error if detection_result else '未知错误'}[/bold red]") raise typer.Exit(1) else: errors = result.get("errors", []) error_msg = "; ".join(errors) if errors else "工作流执行失败" console.print(f"❌ 工作流失败: [bold red]{error_msg}[/bold red]") raise typer.Exit(1) except Exception as e: console.print(f"❌ 执行失败: [bold red]{str(e)}[/bold red]") raise typer.Exit(1) def _display_scenes_table(scenes): """显示场景表格""" table = Table(title="检测到的场景") table.add_column("场景", style="cyan") table.add_column("开始时间", style="green") table.add_column("结束时间", style="green") table.add_column("时长", style="yellow") for scene in scenes: table.add_row( str(scene.index + 1), f"{scene.start_time:.2f}s", f"{scene.end_time:.2f}s", f"{scene.duration:.2f}s" ) console.print(table) if __name__ == "__main__": scene_detect()