Compare commits

...

2 Commits

Author SHA1 Message Date
root c19fb6366f Merge branch 'master' of ssh://gitea.bowongai.com:222/bowong/mxivideo 2025-07-11 16:54:57 +08:00
root 8e1cce7fdf fix 2025-07-11 16:54:50 +08:00
3 changed files with 506 additions and 30 deletions

View File

@ -26,6 +26,16 @@ except ImportError:
logger.warning("Video processing libraries not available. Install opencv-python for full functionality.")
VIDEO_LIBS_AVAILABLE = False
# PySceneDetect库
try:
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
SCENEDETECT_AVAILABLE = True
logger.info("PySceneDetect is available for advanced scene detection")
except ImportError:
logger.warning("PySceneDetect not available. Install scenedetect for better scene detection.")
SCENEDETECT_AVAILABLE = False
@dataclass
class VideoSegment:
@ -210,54 +220,130 @@ class MediaManager:
}
def _detect_scene_changes(self, file_path: str, threshold: float = 30.0) -> List[float]:
"""检测场景变化点(转场镜头)"""
"""使用PySceneDetect检测场景变化点转场镜头"""
if SCENEDETECT_AVAILABLE:
try:
# 创建视频管理器
video_manager = VideoManager([file_path])
scene_manager = SceneManager()
# 添加内容检测器threshold参数控制敏感度
scene_manager.add_detector(ContentDetector(threshold=threshold))
# 开始检测
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
# 获取场景列表
scene_list = scene_manager.get_scene_list()
# 转换为时间戳列表
scene_changes = [0.0] # 开始时间
for scene in scene_list:
start_time = scene[0].get_seconds()
end_time = scene[1].get_seconds()
# 添加场景开始时间跳过第一个因为已经有0.0了)
if start_time > 0 and start_time not in scene_changes:
scene_changes.append(start_time)
# 添加场景结束时间
if end_time not in scene_changes:
scene_changes.append(end_time)
# 确保时间戳排序
scene_changes = sorted(list(set(scene_changes)))
video_manager.release()
logger.info(f"PySceneDetect found {len(scene_changes)-1} scene changes in video")
logger.debug(f"Scene change timestamps: {scene_changes}")
return scene_changes
except Exception as e:
logger.error(f"PySceneDetect failed: {e}, falling back to OpenCV method")
return self._detect_scene_changes_opencv(file_path, threshold)
else:
logger.warning("PySceneDetect not available, using OpenCV method")
return self._detect_scene_changes_opencv(file_path, threshold)
def _detect_scene_changes_opencv(self, file_path: str, threshold: float = 30.0) -> List[float]:
"""使用OpenCV检测场景变化点备用方案"""
if not VIDEO_LIBS_AVAILABLE:
logger.warning("Video processing not available, returning empty scene changes")
return []
logger.warning("Video processing not available, returning basic scene changes")
# 获取视频时长,返回开始和结束时间
try:
video_info = self._get_video_info(file_path)
duration = video_info.get('duration', 0)
return [0.0, duration] if duration > 0 else [0.0]
except:
return [0.0]
try:
cap = cv2.VideoCapture(file_path)
fps = cap.get(cv2.CAP_PROP_FPS)
if fps <= 0:
cap.release()
logger.warning(f"Invalid fps ({fps}) for video {file_path}")
return [0.0]
scene_changes = [0.0] # 开始时间
prev_frame = None
frame_count = 0
# 每隔几帧检测一次,提高性能
frame_skip = max(1, int(fps / 2)) # 每秒检测2次
while True:
ret, frame = cap.read()
if not ret:
break
# 转换为灰度图
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if prev_frame is not None:
# 计算帧间差异
diff = cv2.absdiff(prev_frame, gray)
mean_diff = np.mean(diff)
# 如果差异超过阈值,认为是场景变化
if mean_diff > threshold:
timestamp = frame_count / fps
scene_changes.append(timestamp)
logger.debug(f"Scene change detected at {timestamp:.2f}s (diff: {mean_diff:.2f})")
prev_frame = gray
# 跳帧处理
if frame_count % frame_skip == 0:
# 转换为灰度图并缩小尺寸以提高性能
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.resize(gray, (320, 240))
if prev_frame is not None:
# 计算帧间差异
diff = cv2.absdiff(prev_frame, gray)
mean_diff = np.mean(diff)
# 如果差异超过阈值,认为是场景变化
if mean_diff > threshold:
timestamp = frame_count / fps
# 避免过于接近的场景变化点
if not scene_changes or timestamp - scene_changes[-1] > 1.0:
scene_changes.append(timestamp)
logger.debug(f"Scene change detected at {timestamp:.2f}s (diff: {mean_diff:.2f})")
prev_frame = gray
frame_count += 1
cap.release()
# 添加结束时间
duration = frame_count / fps if fps > 0 else 0
if duration > 0:
if duration > 0 and (not scene_changes or duration - scene_changes[-1] > 0.5):
scene_changes.append(duration)
logger.info(f"Detected {len(scene_changes)-1} scene changes in video")
logger.info(f"OpenCV detected {len(scene_changes)-1} scene changes in video")
return scene_changes
except Exception as e:
logger.error(f"Failed to detect scene changes: {e}")
return [0.0]
logger.error(f"Failed to detect scene changes with OpenCV: {e}")
# 返回基本的开始和结束时间
try:
video_info = self._get_video_info(file_path)
duration = video_info.get('duration', 0)
return [0.0, duration] if duration > 0 else [0.0]
except:
return [0.0]
def _generate_thumbnail(self, video_path: str, timestamp: float, output_path: str) -> bool:
"""生成视频缩略图"""

View File

@ -0,0 +1,161 @@
#!/usr/bin/env python3
"""
安装PySceneDetect的脚本
用于改进视频场景检测功能
"""
import subprocess
import sys
import os
from pathlib import Path
def install_scenedetect():
"""安装PySceneDetect库"""
print("🎬 安装PySceneDetect...")
try:
# 尝试导入,检查是否已安装
import scenedetect
print("✅ PySceneDetect已经安装")
print(f"版本: {scenedetect.__version__}")
return True
except ImportError:
print("📦 PySceneDetect未安装开始安装...")
try:
# 安装PySceneDetect
subprocess.check_call([
sys.executable, '-m', 'pip', 'install', 'scenedetect[opencv]'
])
print("✅ PySceneDetect安装成功")
# 验证安装
try:
import scenedetect
print(f"✅ 验证成功,版本: {scenedetect.__version__}")
return True
except ImportError:
print("❌ 安装验证失败")
return False
except subprocess.CalledProcessError as e:
print(f"❌ 安装失败: {e}")
return False
except Exception as e:
print(f"❌ 安装过程中出现错误: {e}")
return False
def test_scenedetect():
"""测试PySceneDetect功能"""
print("\n🧪 测试PySceneDetect功能...")
try:
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
print("✅ 导入成功")
# 查找测试视频文件
project_root = Path(__file__).parent.parent
test_video_paths = [
project_root / "assets" / "templates" / "template1" / "resources" / "video1.mp4",
project_root / "assets" / "templates" / "template2" / "resources" / "video1.mp4",
"/root/.mixvideo/temp/video_segments",
]
test_video = None
for path in test_video_paths:
if isinstance(path, str):
# 查找目录中的视频文件
if os.path.exists(path):
for file in os.listdir(path):
if file.lower().endswith(('.mp4', '.avi', '.mov')):
test_video = os.path.join(path, file)
break
else:
if path.exists():
test_video = str(path)
break
if test_video:
print(f"🎬 使用测试视频: {test_video}")
# 创建视频管理器
video_manager = VideoManager([test_video])
scene_manager = SceneManager()
# 添加检测器
scene_manager.add_detector(ContentDetector(threshold=30.0))
# 开始检测
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
# 获取结果
scene_list = scene_manager.get_scene_list()
print(f"✅ 检测到 {len(scene_list)} 个场景")
if scene_list:
print("📋 场景列表:")
for i, scene in enumerate(scene_list[:5]): # 只显示前5个
start = scene[0].get_seconds()
end = scene[1].get_seconds()
print(f" 场景 {i+1}: {start:.2f}s - {end:.2f}s")
video_manager.release()
print("✅ PySceneDetect功能测试成功")
return True
else:
print("⚠️ 没有找到测试视频文件,跳过功能测试")
return True
except Exception as e:
print(f"❌ 功能测试失败: {e}")
import traceback
traceback.print_exc()
return False
def show_usage_info():
"""显示使用信息"""
print("\n📖 PySceneDetect使用信息:")
print("1. PySceneDetect是一个专业的视频场景检测库")
print("2. 相比OpenCV的简单帧差检测它提供更准确的场景分割")
print("3. 支持多种检测算法ContentDetector、ThresholdDetector等")
print("4. 可以自动检测淡入淡出、硬切等转场类型")
print("\n🔧 配置参数:")
print("- threshold: 场景变化敏感度 (默认30.0)")
print(" - 较低值 (10-20): 更敏感,检测更多场景变化")
print(" - 较高值 (40-50): 不太敏感,只检测明显的场景变化")
print("\n📚 更多信息:")
print("- 官方文档: https://pyscenedetect.readthedocs.io/")
print("- GitHub: https://github.com/Breakthrough/PySceneDetect")
def main():
"""主函数"""
print("🎬 PySceneDetect安装和测试工具")
print("=" * 50)
# 1. 安装PySceneDetect
if not install_scenedetect():
print("❌ 安装失败,退出")
return
# 2. 测试功能
if not test_scenedetect():
print("❌ 功能测试失败")
return
# 3. 显示使用信息
show_usage_info()
print("\n✅ 所有步骤完成!")
print("\n🚀 现在可以使用改进的场景检测功能了:")
print("- 重新导入视频素材将使用PySceneDetect进行更准确的分镜")
print("- 如果PySceneDetect不可用系统会自动回退到OpenCV方法")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,229 @@
#!/usr/bin/env python3
"""
测试场景检测功能的脚本
比较PySceneDetect和OpenCV的检测效果
"""
import sys
import os
import time
from pathlib import Path
# 添加项目根目录到Python路径
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from python_core.services.media_manager import MediaManager
def find_test_videos():
"""查找测试视频文件"""
print("🔍 查找测试视频文件...")
# 可能的视频文件位置
search_paths = [
Path("/root/.mixvideo/temp/video_segments"),
Path("/root/.mixvideo/temp/original_videos"),
project_root / "assets" / "templates",
]
video_files = []
for search_path in search_paths:
if search_path.exists():
print(f"📁 搜索目录: {search_path}")
if search_path.is_file() and search_path.suffix.lower() in ['.mp4', '.avi', '.mov', '.mkv']:
video_files.append(str(search_path))
elif search_path.is_dir():
# 递归查找视频文件
for video_file in search_path.rglob("*"):
if video_file.is_file() and video_file.suffix.lower() in ['.mp4', '.avi', '.mov', '.mkv', '.wmv', '.flv']:
video_files.append(str(video_file))
if len(video_files) >= 5: # 限制数量
break
print(f"📊 找到 {len(video_files)} 个视频文件")
for i, video in enumerate(video_files[:5]):
file_size = Path(video).stat().st_size / 1024 / 1024
print(f" {i+1}. {Path(video).name} ({file_size:.1f} MB)")
return video_files[:3] # 只返回前3个用于测试
def test_scene_detection_methods(video_path: str):
"""测试不同的场景检测方法"""
print(f"\n🎬 测试视频: {Path(video_path).name}")
print("-" * 50)
media_manager = MediaManager()
# 获取视频基本信息
try:
video_info = media_manager._get_video_info(video_path)
print(f"📊 视频信息:")
print(f" 时长: {video_info['duration']:.2f}")
print(f" 分辨率: {video_info['width']}x{video_info['height']}")
print(f" 帧率: {video_info['fps']:.2f} fps")
print(f" 文件大小: {video_info['file_size']/1024/1024:.1f} MB")
except Exception as e:
print(f"❌ 获取视频信息失败: {e}")
return
# 测试不同的阈值
thresholds = [20.0, 30.0, 40.0]
for threshold in thresholds:
print(f"\n🔧 测试阈值: {threshold}")
# 测试PySceneDetect方法
try:
start_time = time.time()
scene_changes = media_manager._detect_scene_changes(video_path, threshold)
pyscene_time = time.time() - start_time
print(f"✅ PySceneDetect: {len(scene_changes)-1} 个场景变化 (耗时: {pyscene_time:.2f}s)")
if scene_changes:
print(f" 时间点: {[f'{t:.2f}s' for t in scene_changes[:10]]}") # 只显示前10个
except Exception as e:
print(f"❌ PySceneDetect失败: {e}")
# 测试OpenCV方法
try:
start_time = time.time()
opencv_changes = media_manager._detect_scene_changes_opencv(video_path, threshold)
opencv_time = time.time() - start_time
print(f"✅ OpenCV: {len(opencv_changes)-1} 个场景变化 (耗时: {opencv_time:.2f}s)")
if opencv_changes:
print(f" 时间点: {[f'{t:.2f}s' for t in opencv_changes[:10]]}") # 只显示前10个
except Exception as e:
print(f"❌ OpenCV失败: {e}")
def test_scene_detection_accuracy():
"""测试场景检测的准确性"""
print("\n🎯 场景检测准确性测试")
print("=" * 50)
video_files = find_test_videos()
if not video_files:
print("❌ 没有找到测试视频文件")
print("\n💡 建议:")
print("1. 先导入一些视频素材")
print("2. 或者将测试视频文件放到以下目录:")
print(" - /root/.mixvideo/temp/video_segments/")
print(" - /root/.mixvideo/temp/original_videos/")
return
for video_path in video_files:
try:
test_scene_detection_methods(video_path)
except Exception as e:
print(f"❌ 测试视频 {video_path} 失败: {e}")
continue
def benchmark_performance():
"""性能基准测试"""
print("\n⚡ 性能基准测试")
print("=" * 50)
video_files = find_test_videos()
if not video_files:
print("❌ 没有找到测试视频文件")
return
media_manager = MediaManager()
# 选择一个中等大小的视频进行测试
test_video = None
for video in video_files:
try:
size = Path(video).stat().st_size / 1024 / 1024 # MB
if 5 < size < 50: # 5-50MB的视频
test_video = video
break
except:
continue
if not test_video:
test_video = video_files[0] # 使用第一个视频
print(f"🎬 性能测试视频: {Path(test_video).name}")
methods = [
("PySceneDetect", media_manager._detect_scene_changes),
("OpenCV", media_manager._detect_scene_changes_opencv)
]
for method_name, method_func in methods:
try:
print(f"\n🔧 测试 {method_name}...")
# 多次运行取平均值
times = []
results = []
for i in range(3):
start_time = time.time()
scene_changes = method_func(test_video, 30.0)
end_time = time.time()
times.append(end_time - start_time)
results.append(len(scene_changes) - 1)
print(f" 运行 {i+1}: {end_time - start_time:.2f}s, {len(scene_changes)-1} 个场景")
avg_time = sum(times) / len(times)
avg_scenes = sum(results) / len(results)
print(f"{method_name} 平均性能:")
print(f" 平均耗时: {avg_time:.2f}s")
print(f" 平均场景数: {avg_scenes:.1f}")
except Exception as e:
print(f"{method_name} 性能测试失败: {e}")
def show_recommendations():
"""显示使用建议"""
print("\n💡 使用建议")
print("=" * 50)
print("🎯 选择合适的阈值:")
print("- 阈值 10-20: 高敏感度,适合检测细微的场景变化")
print("- 阈值 25-35: 中等敏感度,适合大多数情况 (推荐)")
print("- 阈值 40-50: 低敏感度,只检测明显的场景变化")
print("\n⚡ 性能考虑:")
print("- PySceneDetect: 更准确,但处理时间较长")
print("- OpenCV: 处理速度快,但准确性较低")
print("- 建议: 对重要视频使用PySceneDetect批量处理时使用OpenCV")
print("\n🔧 优化建议:")
print("- 对于长视频,可以先用低敏感度快速分割")
print("- 然后对重要片段使用高敏感度精细分割")
print("- 定期检查分割结果,调整阈值参数")
def main():
"""主函数"""
print("🎬 场景检测功能测试")
print("=" * 50)
try:
# 1. 测试场景检测准确性
test_scene_detection_accuracy()
# 2. 性能基准测试
benchmark_performance()
# 3. 显示使用建议
show_recommendations()
print("\n✅ 测试完成!")
except Exception as e:
print(f"❌ 测试过程中出现错误: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()