import json import uuid from typing import List, Union, Optional, Dict import pydantic from pydantic import BaseModel, Field, ConfigDict, field_validator, ValidationError, model_validator, computed_field, \ EmailStr from ..cache_tasks.models import CacheTask, MediaSource, Base64File from ..enums.models import MediaProtocol from ..ffmpeg_tasks.models import WebhookNotify, FFMpegSliceSegment, FFMPEGSliceOptions from ...utils.TimeUtils import TimeDelta class ClusterCacheBatchRequest(BaseModel): tasks: List[CacheTask] = Field(description="批量操作任务,按列表顺序执行") model_config = ConfigDict() class MediaSourcesRequest(BaseModel): inputs: List[MediaSource] = Field(examples=[ [ "vod://ap-shanghai/1500034234/1397757910405340824.mp4", "vod://ap-shanghai/1500034234/1397757910403699452.mp4", "s3://ap-northeast-2/modal-media-cache/concat/outputs/fc-01JTPV5FCNA74CKX3N3214XJPD/output.mp4" ] ], description="支持多种协议['vod://', 's3://'], 计划支持['cos://', http://]") @field_validator('inputs', mode='before') @classmethod def parse_inputs(cls, v: Union[str, MediaSource]) -> List[MediaSource]: if not v: raise ValidationError([ { 'loc': ('inputs',), 'msg': "inputs为空", 'type': 'value_error', 'input': v } ], MediaSourcesRequest) result = [] for item in v: if isinstance(item, str): result.append(MediaSource.from_str(item)) elif isinstance(item, MediaSource): result.append(item) else: raise ValidationError([ { 'loc': ('inputs',), 'msg': "inputs元素类型错误: 必须是字符串", 'type': 'value_error', 'input': v } ], MediaSourcesRequest) return result model_config = { "arbitrary_types_allowed": True } class UploadBase64Request(BaseModel): file: Base64File = Field(description="上传的文件") prefix: Optional[str] = Field(description="文件存在的前缀目录", default=None) class UploadPresignRequest(BaseModel): key: str = Field(description="上传文件的key", examples=['123/456/abc.mp4']) content_type: str = Field(description="上传对象的文件类型", examples=['video/mp4']) class UploadMultipartPresignRequest(UploadPresignRequest): parts_count: int = Field(description="分片数量") class MediaCopyRequest(BaseModel): class MediaCopyTask(BaseModel): source: MediaSource = Field(description="源媒体") destination: MediaSource = Field(description="") class FFMPEGSliceTaskStatusRequest(BaseModel): taskId: str = Field(description="任务Id") class BaseFFMPEGTaskRequest(BaseModel): webhook: Optional[WebhookNotify] = Field(description="Task webhook", default=None) class FFMPEGSliceRequest(BaseFFMPEGTaskRequest): media: MediaSource = Field(description="待切割的媒体源") markers: List[FFMpegSliceSegment] = Field(description="按照时间顺序排序过的切割标记数组") options: FFMPEGSliceOptions = Field(default_factory=FFMPEGSliceOptions, description="输出质量选项") @field_validator('media', mode='before') @classmethod def parse_inputs(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) class FFMPEGConcatRequest(BaseFFMPEGTaskRequest): medias: MediaSourcesRequest = Field(description="待合并的媒体源") class FFMPEGExtractAudioRequest(BaseFFMPEGTaskRequest): media: MediaSource = Field(description="待提取音频的媒体源") @field_validator('media', mode='before') @classmethod def parse_inputs(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) class FFMPEGCornerMirrorRequest(BaseFFMPEGTaskRequest): media: MediaSource = Field(description="需要处理的媒体源") @field_validator('media', mode='before') @classmethod def parse_inputs(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) class FFMPEGBgmRequest(BaseFFMPEGTaskRequest): media: MediaSource = Field(description="需要处理的媒体源") bgm_media: MediaSource = Field(description="添加的BGM媒体源", alias="bgmMedia") @field_validator('media', mode='before') @classmethod def parse_media_input(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) @field_validator('bgm_media', mode='before') @classmethod def parse_bgm_input(cls, v: Union[str, MediaSource]): if isinstance(v, str): media = MediaSource.from_str(v) if not media.file_extension in ['wav', 'mp3']: raise pydantic.ValidationError("必须使用符合规范的音频格式, 如wav或者mp3") elif isinstance(v, MediaSource): return v else: raise TypeError(v) class FFMPEGZoomLoopRequest(BaseFFMPEGTaskRequest): media: MediaSource = Field(description="需要处理的媒体源") duration: float = Field(description="放大缩小一个循环的持续时间秒数", default=6.0) zoom: float = Field(description="放大缩小系数", default=0.1) @field_validator('media', mode='before') @classmethod def parse_inputs(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) class FFMPEGOverlayGifRequest(BaseFFMPEGTaskRequest): media: MediaSource = Field(description="需要处理的媒体源") gif: MediaSource = Field(description="叠加的特效gif") @field_validator('media', mode='before') @classmethod def parse_media_input(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(f"解析{type(v)}类型不支持") @field_validator('gif', mode='before') @classmethod def parse_fig_input(cls, v: Union[str, MediaSource]): if isinstance(v, str): media = MediaSource.from_str(v) if not media.file_extension == 'gif': raise pydantic.ValidationError("必须使用.gif文件") return media elif isinstance(v, MediaSource): return v else: raise TypeError(v) class FFMPEGSubtitleOverlayRequest(BaseFFMPEGTaskRequest): media: MediaSource = Field(description="需要处理的媒体源") subtitle: Optional[MediaSource] = Field(default=None, description="需要叠加的字幕文件") embedded_subtitle: Optional[MediaSource] = Field(default=None, description="需要内嵌的字幕文件") fonts: Optional[List[MediaSource]] = Field(default=None, description="字幕文件内使用到的字体文件") @field_validator('media', mode='before') @classmethod def parse_media_input(cls, v: Union[str, MediaSource]) -> MediaSource: if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) @field_validator('subtitle', mode='before') @classmethod def parse_subtitle_input(cls, v: Union[str, MediaSource]) -> Optional[MediaSource]: if not v: return None if isinstance(v, str): media = MediaSource.from_str(v) if not media.file_extension in ['ass']: raise pydantic.ValidationError("必须使用标准字幕文件, 如.ass") return media elif isinstance(v, MediaSource): return v else: raise TypeError(v) @field_validator('embedded_subtitle', mode='before') @classmethod def parse_embedded_subtitle_input(cls, v: Union[str, MediaSource]) -> Optional[MediaSource]: if not v: return None if isinstance(v, str): media = MediaSource.from_str(v) if not media.file_extension in ['vtt', 'srt', 'ass']: raise pydantic.ValidationError("必须使用标准字幕文件, 如.vtt/.srt/.ass") return media elif isinstance(v, MediaSource): return v else: raise TypeError(v) @field_validator('fonts', mode='before') @classmethod def parse_font_input(cls, v: Union[str, MediaSource]) -> Optional[List[MediaSource]]: if not v: return None result = [] for item in v: if isinstance(item, str): result.append(MediaSource.from_str(item)) elif isinstance(item, MediaSource): result.append(item) else: raise pydantic.ValidationError("fonts元素类型错误: 必须是字符串") return result @model_validator(mode='after') def check_at_least_one(self): if self.subtitle is None and self.embedded_subtitle is None: raise pydantic.ValidationError("至少需要提供一个有效字幕") if self.subtitle is not None and self.fonts is None: raise pydantic.ValidationError("使用叠加字幕时需要指定使用的字体文件") return self class FFMPEGMixBgmWithNoiseReduceRequest(BaseFFMPEGTaskRequest): media: MediaSource = Field(description="需要处理的媒体源") bgm: MediaSource = Field(description="需要添加的BGM媒体源") video_volume: float = Field(description="最终输出的视频音量系数", default=1.4) music_volume: float = Field(description="最终输出的BGM音量系数", default=0.1) noise_sample: Optional[MediaSource] = Field(description="常考噪音样本,如不指定将使用源视频的前2秒作为样本", default=None) @field_validator('media', mode='before') @classmethod def parse_media_input(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) @field_validator('bgm', mode='before') @classmethod def parse_bgm_input(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) @field_validator('noise_sample', mode='before') @classmethod def parse_sample_input(cls, v: Union[None, str, MediaSource]): if not v: return None if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) class FFMPEGVideoLoopFillAudioRequest(BaseFFMPEGTaskRequest): video: MediaSource = Field(description="用来填充的视频素材") audio: MediaSource = Field(description="被填充的音频素材") @field_validator('video', mode='before') @classmethod def parse_video_input(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) @field_validator('audio', mode='before') @classmethod def parse_audio_input(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) class FFMPEGExtractFrameRequest(BaseFFMPEGTaskRequest): video: MediaSource = Field(description="提取帧画面的来源") seek_time: Optional[Union[str, int, float]] = Field(default=None, description="先跳转到视频对应时间再取首帧", examples=["00:00:01.000", "5.4", "2"]) frame_index: int = Field(description="提取的第几帧, 从1开始,默认为1", default=1) @field_validator('video', mode='before') @classmethod def parse_video_input(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) @computed_field(description="格式处理后的Seek Time") @property def prased_seek_time(self) -> 'TimeDelta': if self.seek_time is None: return None elif isinstance(self.seek_time, str): return TimeDelta.from_format_string(self.seek_time) elif isinstance(self.seek_time, int): return TimeDelta(seconds=self.seek_time) elif isinstance(self.seek_time, float): return TimeDelta(seconds=self.seek_time) else: raise TypeError("不支持的时间类型") model_config = { "arbitrary_types_allowed": True } class ComfyTaskRequest(BaseFFMPEGTaskRequest): video_path: MediaSource = Field( default=None, description="视频源") start_time: str = Field(default="00:00:01.600", description="开始时间") filename_prefix: str = Field(default=str(uuid.uuid4()), description="生成文件名前缀") tts_text1: str = Field(default="好好看,这是我们家专门为女生定制的背心,", description="tts文本1") tts_text2: str = Field(default="", description="tts文本2") tts_text3: str = Field(default="", description="tts文本3") tts_text4: str = Field(default="", description="tts文本4") anchor_id: str = Field(default="dawan", description="讲话人ID") speed: float = Field(default=1, description="讲话语速") @field_validator('video_path', mode='before') @classmethod def parse_inputs(cls, v: Union[str, MediaSource]): if isinstance(v, str): return MediaSource.from_str(v) elif isinstance(v, MediaSource): return v else: raise TypeError(v) class FFMPEGStreamRecordRequest(BaseFFMPEGTaskRequest): stream_source: str = Field(description="直播源地址") first_segment_duration: int = Field(default=2, description="hls首个片段时长(秒), 首片段长度越小hls流能越快速开始播放") segment_duration: int = Field(default=10, description="hls片段时长(秒)") recording_timeout: int = Field(default=300, description="hls流无内容后等待的时长(秒)") monitor_timeout: int = Field(default=36000, description="录制监控最大时长(秒), 默认为10小时, 不可大于12小时", le=43200) class GeminiRequest(BaseFFMPEGTaskRequest): media_hls_url: MediaSource = Field(default="", description="视频流录制HLS地址 hls://格式 需录制超过20分钟") product_cover_grid_uri_list: List[str] = Field(description="商品封面网格拼图URI列表") product_list: List[str] = Field(description="商品名列表(时间倒序)"), start_time: str = Field(default="00:00:00.000", description="开始时间(hls)") end_time: str = Field(default="00:20:00.000", description="结束时间(hls)") options: FFMPEGSliceOptions = Field(default=FFMPEGSliceOptions(), description="输出质量选项") scale: float = Field(default=0.85, description="视频尺寸缩放倍率") last_product_text: str = Field(default="", description="上一段视频结尾介绍的商品以及标签") @field_validator('media_hls_url', mode='before') @classmethod def parse_inputs(cls, v: Union[str, MediaSource]): if isinstance(v, str): media_source = MediaSource.from_str(v) if media_source.protocol == MediaProtocol.hls: return media_source else: raise pydantic.ValidationError('media只支持hls格式的urn') elif isinstance(v, MediaSource): return v else: raise pydantic.ValidationError("media格式读取失败") class GeminiRequestFirstOnly(BaseFFMPEGTaskRequest): product_cover_grid_uri_list: List[str] = Field(description="商品封面网格拼图URI列表") product_list: List[str] = Field(description="商品名列表(时间倒序)"), prompt_label: str = Field(default="production", description="使用的Langfuse Prompt Label") class GeminiRequestSecondOnly(BaseFFMPEGTaskRequest): media_hls_url: MediaSource = Field(default="", description="视频流录制HLS地址 hls://格式 需录制超过20分钟") identified_product_list: List[Dict] = Field(description="第一阶段返回的识别商品及特征列表") start_time: str = Field(default="00:00:00.000", description="开始时间(hls)") end_time: str = Field(default="00:20:00.000", description="结束时间(hls)") options: FFMPEGSliceOptions = Field(default=FFMPEGSliceOptions(), description="输出质量选项") scale: float = Field(default=0.85, description="视频尺寸缩放倍率") prompt_label: str = Field(default="production", description="使用的Langfuse Prompt Label"), last_product_text: str = Field(default="", description="上一段视频结尾介绍的商品以及标签") @field_validator('media_hls_url', mode='before') @classmethod def parse_inputs_media_hls_url(cls, v: Union[str, MediaSource]): if isinstance(v, str): media_source = MediaSource.from_str(v) if media_source.protocol == MediaProtocol.hls: return media_source else: raise pydantic.ValidationError('media只支持hls格式的urn') elif isinstance(v, MediaSource): return v else: raise pydantic.ValidationError("media格式读取失败") @field_validator("identified_product_list", mode="before") @classmethod def parse_inputs_identified_product_list(cls, v: str): if isinstance(v, str): return json.loads(v) else: raise pydantic.ValidationError("identified_product_list") class MonitorLiveRoomProductRequest(BaseModel): cookie: str = Field(default="YOUR_COOKIE", description="用户网页版抖音Cookie/Your web version of Douyin Cookie") room_id: str = Field(default="", description="直播间room_id/Room room_id") author_id: str = Field(default="", description="作者id/Author id") class MakeGridGeminiRequest(BaseFFMPEGTaskRequest): pic_info_list: List[Dict[str, str]] = Field(default=[], description="包含图片信息的字典列表,每个字典包含 \"title\" 和 \"cover\" 键") image_size: int = Field(default=450, description="单个图片网格的尺寸/像素") text_height: int = Field(default=40, description="文本框的高度/像素") font_size: int = Field(default=18, description="文本尺寸/像素") padding: int = Field(default=5, description="文本距离文本框边缘距离/像素") separator: int = Field(default=12, description="分割线宽度/像素") class FFMPEGConvertStreamRequest(BaseFFMPEGTaskRequest): media: MediaSource = Field(description="待转换的媒体源") options: FFMPEGSliceOptions = Field(default_factory=FFMPEGSliceOptions, description="输出质量选项") @field_validator('media', mode='before') @classmethod def parse_inputs(cls, v: Union[str, MediaSource]): if isinstance(v, str): media_source = MediaSource.from_str(v) if media_source.protocol == MediaProtocol.hls: return media_source else: raise pydantic.ValidationError('media只支持hls格式的urn') elif isinstance(v, MediaSource): return v else: raise pydantic.ValidationError("media格式读取失败") class NakamaLogin(BaseModel): email: EmailStr = Field(description="Bowong Echo(Nakama)的登录账号") password: str = Field(description="Bowong Echo(Nakama)的登录密码")