mixvideo-v2/cargos/tvai
imeepos e4dbb57b68 feat: 完成 tvai 库基础架构搭建 (阶段一)
项目初始化完成
- 创建 cargos/tvai 项目结构
- 配置 Cargo.toml 依赖和工作空间
- 实现基础错误类型 TvaiError

 FFmpeg 管理模块
- 实现 FfmpegManager 结构体
- FFmpeg 路径检测和验证 (系统 vs Topaz)
- 基础命令执行框架
- 支持 Windows/Linux/macOS 平台

 核心处理引擎框架
- TvaiProcessor 主结构体
- TvaiConfig 配置管理和 Builder 模式
- 临时文件管理和自动清理
- GPU 检测和配置

 模型和参数定义
- 16种超分辨率模型枚举 (Iris3, Nyx3, Thf4 等)
- 4种插值模型枚举 (Apo8, Chr2 等)
- 质量预设和编码设置
- 完整的参数结构体和验证

 模块结构完整
- video/ 视频处理模块框架
- image/ 图片处理模块框架
- config/ 配置管理模块
- utils/ 工具函数模块

 系统检测功能
- Topaz Video AI 安装检测
- GPU 支持检测
- FFmpeg 可用性检测

 文档和示例
- 完整的 README 文档
- 基础使用示例
- API 文档注释

 测试结果
-  编译通过 (cargo check)
-  示例运行成功
-  检测到 Topaz Video AI 安装
-  所有模块结构就绪

下一步: 开始阶段二 - 核心处理引擎实现
2025-08-11 15:12:44 +08:00
..
examples feat: 完成 tvai 库基础架构搭建 (阶段一) 2025-08-11 15:12:44 +08:00
src feat: 完成 tvai 库基础架构搭建 (阶段一) 2025-08-11 15:12:44 +08:00
Cargo.toml feat: 完成 tvai 库基础架构搭建 (阶段一) 2025-08-11 15:12:44 +08:00
README.md feat: 完成 tvai 库基础架构搭建 (阶段一) 2025-08-11 15:12:44 +08:00

README.md

TVAI - Topaz Video AI Integration Library

A Rust library for integrating with Topaz Video AI to perform video and image enhancement including super-resolution upscaling and frame interpolation.

Features

  • 🎬 Video Super-Resolution: Upscale videos using AI models
  • 🎞️ Frame Interpolation: Create smooth slow motion effects
  • 🖼️ Image Upscaling: Enhance image resolution and quality
  • GPU Acceleration: CUDA and hardware encoding support
  • 🔧 Multiple AI Models: 16 upscaling and 4 interpolation models
  • 📦 Batch Processing: Process multiple files efficiently
  • 🎛️ Flexible Configuration: Fine-tune processing parameters

Requirements

  • Topaz Video AI installed
  • Rust 1.70+
  • FFmpeg (included with Topaz Video AI)
  • Optional: CUDA-compatible GPU for acceleration

Installation

Add this to your Cargo.toml:

[dependencies]
tvai = "0.1.0"

Quick Start

Video Upscaling

use tvai::*;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Quick 2x upscaling
    quick_upscale_video(
        std::path::Path::new("input.mp4"),
        std::path::Path::new("output.mp4"),
        2.0,
    ).await?;
    
    Ok(())
}

Image Upscaling

use tvai::*;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Quick 4x image upscaling
    quick_upscale_image(
        std::path::Path::new("photo.jpg"),
        std::path::Path::new("photo_4x.png"),
        4.0,
    ).await?;
    
    Ok(())
}

Advanced Usage

use tvai::*;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Detect Topaz installation
    let topaz_path = detect_topaz_installation()
        .ok_or("Topaz Video AI not found")?;
    
    // Create configuration
    let config = TvaiConfig::builder()
        .topaz_path(topaz_path)
        .use_gpu(true)
        .build()?;
    
    // Create processor
    let processor = TvaiProcessor::new(config)?;
    
    // Custom upscaling parameters
    let params = VideoUpscaleParams {
        scale_factor: 2.0,
        model: UpscaleModel::Iris3,
        compression: 0.0,
        blend: 0.1,
        quality_preset: QualityPreset::HighQuality,
    };
    
    // Process video
    let result = processor.upscale_video(
        std::path::Path::new("input.mp4"),
        std::path::Path::new("output.mp4"),
        params,
    ).await?;
    
    println!("Processing completed in {:?}", result.processing_time);
    Ok(())
}

AI Models

Upscaling Models

  • Iris v3 - Best general purpose model
  • Nyx v3 - Optimized for portraits
  • Theia Fidelity v4 - Old content restoration
  • Gaia HQ v5 - Game/CG content
  • Proteus v4 - Problem footage repair
  • And more...

Interpolation Models

  • Apollo v8 - High quality interpolation
  • Chronos v2 - Animation content
  • Apollo Fast v1 - Fast processing
  • Chronos Fast v3 - Fast animation

Presets

The library includes optimized presets for common use cases:

// Video presets
let old_video_params = VideoUpscaleParams::for_old_video();
let game_params = VideoUpscaleParams::for_game_content();
let animation_params = VideoUpscaleParams::for_animation();
let portrait_params = VideoUpscaleParams::for_portrait();

// Image presets
let photo_params = ImageUpscaleParams::for_photo();
let artwork_params = ImageUpscaleParams::for_artwork();
let screenshot_params = ImageUpscaleParams::for_screenshot();

System Detection

// Detect Topaz installation
let topaz_path = detect_topaz_installation();

// Check GPU support
let gpu_info = detect_gpu_support();

// Check FFmpeg availability
let ffmpeg_info = detect_ffmpeg();

Error Handling

The library uses the anyhow crate for error handling:

use tvai::*;

match quick_upscale_video(input, output, 2.0).await {
    Ok(result) => println!("Success: {:?}", result),
    Err(TvaiError::TopazNotFound(path)) => {
        eprintln!("Topaz not found at: {}", path);
    },
    Err(TvaiError::FfmpegError(msg)) => {
        eprintln!("FFmpeg error: {}", msg);
    },
    Err(e) => eprintln!("Other error: {}", e),
}

Development Status

This library is currently in development. The following features are planned:

  • Basic project structure
  • FFmpeg management
  • Core processor framework
  • Video upscaling implementation
  • Frame interpolation implementation
  • Image upscaling implementation
  • Batch processing
  • Progress callbacks
  • Comprehensive testing

License

MIT License - see LICENSE file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.