183 lines
7.0 KiB
Python
183 lines
7.0 KiB
Python
# -*- coding:utf-8 -*-
|
|
"""
|
|
File lip_sync_node.py
|
|
Author silence
|
|
Date 2025/9/9 17:39
|
|
"""
|
|
import io
|
|
import mimetypes
|
|
import os
|
|
import time
|
|
import folder_paths
|
|
import logging
|
|
import numpy as np
|
|
import httpx
|
|
from PIL import Image
|
|
import scipy.io.wavfile as wavfile
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
logger = logging.getLogger("hedra api")
|
|
|
|
|
|
class HedraLipNode:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE", {"description": "图片文件"}),
|
|
"audio": ("AUDIO",),
|
|
"env": (["prod", "dev", "test"], {"default": "prod"}),
|
|
},
|
|
"optional": {
|
|
"prompt": ("STRING", {"description": "【可选】 文本提示词", "multiline": True}),
|
|
"resolution": (['720p', '540p'], {"default": "720p"}),
|
|
"aspect_ratio": (["1:1", "9:16", "16:9"], {"default": "1:1"}),
|
|
"interval": ("INT", {"default": 3, "min": 1, "max": 60}),
|
|
"timeout": ("INT", {"default": 300, "min": 10, "max": 3600}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("STRING",)
|
|
RETURN_NAMES = ("video_url",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "不忘科技-自定义节点🚩/api/hedra对嘴型"
|
|
url_mapping = {
|
|
"prod": "https://bowongai-prod--text-video-agent-fastapi-app.modal.run",
|
|
"dev": "https://bowongai-dev--text-video-agent-fastapi-app.modal.run",
|
|
"test": "https://bowongai-test--text-video-agent-fastapi-app.modal.run"
|
|
}
|
|
|
|
def save_audio_tensor_to_temp(self, waveform_tensor, sample_rate):
|
|
if 'wavfile' not in globals():
|
|
raise ImportError("Scipy 库未安装。请在您的 ComfyUI 环境中运行 'pip install scipy' 来启用此功能。")
|
|
waveform_np = waveform_tensor.cpu().numpy()
|
|
if waveform_np.ndim == 3:
|
|
waveform_np = waveform_np[0]
|
|
|
|
waveform_np = waveform_np.T
|
|
waveform_int16 = np.int16(waveform_np * 32767)
|
|
output_dir = folder_paths.get_temp_directory()
|
|
(full_output_folder, filename, counter, _, _) = folder_paths.get_save_image_path("llm_temp_audio", output_dir)
|
|
filepath = os.path.join(full_output_folder, f"{filename}_{counter:05}.wav")
|
|
wavfile.write(filepath, sample_rate, waveform_int16)
|
|
print(f"音频张量已使用 Scipy 保存到临时文件: {filepath}")
|
|
return filepath
|
|
|
|
def execute(self, image, audio, env: str,
|
|
prompt: str, resolution: str, aspect_ratio: str,
|
|
timeout: int = 300,
|
|
interval: int = 3
|
|
):
|
|
img_tensor = image[0]
|
|
img_np = np.clip(255. * img_tensor.cpu().numpy(), 0, 255).astype(np.uint8)
|
|
pil_image = Image.fromarray(img_np)
|
|
buffer = io.BytesIO()
|
|
pil_image.save(buffer, format="PNG")
|
|
buffer.seek(0)
|
|
audio_info = audio[0] if isinstance(audio, (list, tuple)) and audio else audio
|
|
if isinstance(audio_info, dict) and 'filename' in audio_info:
|
|
filename = audio_info['filename']
|
|
print(f"从音频对象中找到 'filename': '{filename}'")
|
|
full_path = folder_paths.get_full_path("input", filename)
|
|
if full_path and os.path.exists(full_path):
|
|
media_path = full_path
|
|
else:
|
|
return (f"错误: 无法在 'input' 文件夹中找到文件 '{filename}'。",)
|
|
|
|
elif isinstance(audio_info, dict) and 'waveform' in audio_info and 'sample_rate' in audio_info:
|
|
print("从音频对象中找到 'waveform' 数据,正在使用 Scipy 保存为临时文件...")
|
|
try:
|
|
media_path = self.save_audio_tensor_to_temp(audio_info['waveform'], audio_info['sample_rate'])
|
|
except Exception as e:
|
|
return (f"错误: 保存音频张量时出错: {e}",)
|
|
|
|
elif isinstance(audio_info, str):
|
|
print(f"检测到音频输入为字符串,作为文件名处理: '{audio_info}'")
|
|
full_path = folder_paths.get_full_path("input", audio_info)
|
|
if full_path and os.path.exists(full_path):
|
|
media_path = full_path
|
|
else:
|
|
return (f"错误: 无法在 'input' 文件夹中找到文件 '{audio_info}'。",)
|
|
|
|
else:
|
|
return (f"错误: 不支持的音频输入格式或结构。收到类型: {type(audio_info)}",)
|
|
|
|
headers = {
|
|
'accept': 'application/json',
|
|
}
|
|
if not media_path:
|
|
raise ValueError(f'parse audio data failed...')
|
|
audio_mime_type = mimetypes.guess_type(media_path)[0]
|
|
audio_name = os.path.basename(media_path)
|
|
img_file_name = f'{time.time_ns()}.png'
|
|
prompt = prompt or ''
|
|
prompt = prompt.strip()
|
|
files = {
|
|
'img_file': (img_file_name, buffer, 'image/png'),
|
|
'audio_file': (audio_name, open(media_path, 'rb'), audio_mime_type),
|
|
'resolution': (None, resolution),
|
|
'aspect_ratio': (None, aspect_ratio),
|
|
'prompt': (None, prompt)
|
|
}
|
|
url = self.url_mapping[env]
|
|
api_url = f'{url}/api/302/hedra/v3/submit/task'
|
|
print(f'api_url: {api_url}')
|
|
response = httpx.post(
|
|
api_url,
|
|
headers=headers,
|
|
files=files,
|
|
timeout=120
|
|
)
|
|
response.raise_for_status()
|
|
resp_json = response.json()
|
|
if resp_json.get('status'):
|
|
task_id = resp_json.get('data')
|
|
res = self.sync_query_result(task_id, url, timeout=timeout, interval=interval)
|
|
return (res,)
|
|
else:
|
|
error_msg = resp_json.get('msg', '未知API错误')
|
|
raise ValueError(f"API返回失败: {error_msg}")
|
|
|
|
def sync_query_result(self, task_id: str, base_url: str,
|
|
timeout: int = 600, interval: int = 3):
|
|
def query_task_result(t_id: str):
|
|
headers = {
|
|
'accept': 'application/json',
|
|
}
|
|
|
|
params = {
|
|
'task_id': t_id,
|
|
}
|
|
nonlocal base_url
|
|
api_url = f'{base_url}/api/302/hedra/v3/task/status'
|
|
response = httpx.get(
|
|
api_url,
|
|
params=params,
|
|
headers=headers,
|
|
)
|
|
response.raise_for_status()
|
|
print(f'query_task_result: {response.text}')
|
|
return response.json()
|
|
|
|
end = time.time() + timeout
|
|
while time.time() <= end:
|
|
tmp_dict = query_task_result(task_id)
|
|
if tmp_dict['status']:
|
|
video_url = tmp_dict['data']
|
|
return video_url
|
|
else:
|
|
print(f'wait next interval: {interval}')
|
|
time.sleep(interval)
|
|
else:
|
|
raise ValueError(f'query task timeout: {timeout}')
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"HedraLipNode": HedraLipNode
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"HedraLipNode": "hedra对嘴型"
|
|
}
|