ComfyUI-CustomNode/ext/load_image_pro.py

62 lines
2.0 KiB
Python

from io import BytesIO
import numpy as np
import requests
import torch
from PIL import Image
# 定义节点类
class LoadNetImg:
# 定义节点输入类型
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image_url": ("STRING", {
"default": "https://example.com/sample.jpg",
"multiline": False
}),
}
}
# 定义节点输出类型
RETURN_TYPES = ("IMAGE",) # 返回图像数据
RETURN_NAMES = ("image",) # 命名返回值
FUNCTION = "load_image_task" # 函数标识符,方便注册多个节点功能
OUTPUT_NODE = False # 不允许该节点直接作为最终输出节点
CATEGORY = "image" # 节点所属类别(在 ComfyUI 界面中分类)
def load_image_task(self, image_url):
try:
if not image_url or not image_url.strip():
raise ValueError("需要提供图片URL")
# 下载网络图片
response = requests.get(image_url)
response.raise_for_status() # 请求失败时抛出异常
image = Image.open(BytesIO(response.content)).convert("RGB")
# 按照官方格式转换图像数据
# Convert to numpy array and normalize to 0-1
image_array = np.array(image).astype(np.float32) / 255.0
# Convert to torch tensor and add batch dimension
image_tensor = torch.from_numpy(image_array)[None,]
return (image_tensor,) # 返回torch张量
except Exception as e:
print(f"Error loading image: {e}")
# 返回一个空的黑色图片作为错误处理
empty_image = torch.zeros((1, 512, 512, 3), dtype=torch.float32)
return (empty_image,)
# 映射节点类和名称
NODE_CLASS_MAPPINGS = {
"LoadNetImg": LoadNetImg, # 将类映射到节点名称
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LoadNetImg": "load_net_image", # 节点显示名称
}