215 lines
8.7 KiB
Python
215 lines
8.7 KiB
Python
import mimetypes
|
|
import os
|
|
import uuid
|
|
|
|
import boto3
|
|
import folder_paths
|
|
import numpy as np
|
|
import requests
|
|
import torch
|
|
from PIL import Image
|
|
from botocore.config import Config
|
|
|
|
try:
|
|
import scipy.io.wavfile as wavfile
|
|
except ImportError:
|
|
print("------------------------------------------------------------------------------------")
|
|
print("[FileUploadNode] 提示: Scipy 库未安装, 如果需要处理音频输入, 请运行: pip install scipy")
|
|
print("------------------------------------------------------------------------------------")
|
|
|
|
aws_settings = {
|
|
'access_key_id': 'AKIAYRH5NGRSWHN2L4M6',
|
|
'secret_access_key': 'kfAqoOmIiyiywi25xaAkJUQbZ/EKDnzvI6NRCW1l',
|
|
'bucket_name': 'modal-media-cache',
|
|
'region': 'ap-northeast-2',
|
|
'cnd_endpoint': 'https://cdn.roasmax.cn'
|
|
}
|
|
|
|
|
|
def upload_file_s3_v2(file_path: str, remove: bool = False, perpetual: bool = False):
|
|
"""
|
|
使用 boto3 客户端异步上传文件到 S3
|
|
"""
|
|
resp_data = {'status': False, 'data': '', 'msg': ''}
|
|
if not os.path.isfile(file_path):
|
|
resp_data['msg'] = f'文件不存在: {file_path}'
|
|
print(f"[FileUploadNode ERROR] {resp_data['msg']}")
|
|
return resp_data
|
|
try:
|
|
s3_client = boto3.client(
|
|
"s3",
|
|
aws_access_key_id=aws_settings['access_key_id'],
|
|
aws_secret_access_key=aws_settings['secret_access_key'],
|
|
region_name=aws_settings['region'],
|
|
endpoint_url="https://s3-accelerate.amazonaws.com",
|
|
config=Config(s3={'addressing_style': 'virtual'}, signature_version='s3v4')
|
|
)
|
|
|
|
suffix = os.path.splitext(file_path)[-1]
|
|
bucket_suffix = 'material/' if perpetual else 'upload/'
|
|
s3_key = f"{bucket_suffix}{uuid.uuid4().hex}{suffix}"
|
|
|
|
mime_type, _ = mimetypes.guess_type(file_path)
|
|
extra_args = {'ContentType': mime_type if mime_type else 'application/octet-stream'}
|
|
|
|
print(
|
|
f"[FileUploadNode INFO] 开始上传文件 {os.path.basename(file_path)} 到 S3 bucket '{aws_settings['bucket_name']}'...")
|
|
s3_client.upload_file(
|
|
Filename=os.path.abspath(file_path),
|
|
Bucket=aws_settings['bucket_name'],
|
|
Key=s3_key,
|
|
ExtraArgs=extra_args
|
|
)
|
|
|
|
cdn_url = f"{aws_settings['cnd_endpoint'].rstrip('/')}/{s3_key.lstrip('/')}"
|
|
resp_data.update(status=True, data=cdn_url, msg='文件成功上传到S3')
|
|
print(f"[FileUploadNode INFO] 文件成功上传到S3: {cdn_url}")
|
|
|
|
except Exception as e:
|
|
print(f"[FileUploadNode ERROR] 上传文件到S3时出错: {e}")
|
|
resp_data['msg'] = f'上传文件到S3时出错: {e}'
|
|
finally:
|
|
if remove and resp_data['status'] and os.path.exists(file_path):
|
|
try:
|
|
os.remove(file_path)
|
|
print(f"[FileUploadNode INFO] 源文件已根据选项删除: {file_path}")
|
|
except Exception as e:
|
|
print(f"[FileUploadNode ERROR] 删除源文件失败: {e}")
|
|
return resp_data
|
|
|
|
|
|
def upload_file_gs(file_path: str):
|
|
headers = {
|
|
'accept': 'application/json',
|
|
}
|
|
file_name = os.path.basename(file_path)
|
|
with open(file_path, 'rb') as f:
|
|
file_stream = f.read()
|
|
mime_type, _ = mimetypes.guess_type(file_path)
|
|
files = {
|
|
'file': (file_name, file_stream, mime_type),
|
|
}
|
|
|
|
response = requests.post(
|
|
'https://modal-prod.bowong.cc/api/file/upload/s3',
|
|
headers=headers,
|
|
files=files,
|
|
)
|
|
return response.json()
|
|
|
|
|
|
class FileUploadNode:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"perpetual": ("BOOLEAN", {"default": False}),
|
|
# "remove_source_file": ("BOOLEAN", {"default": False}),
|
|
"cdn_type": (['s3', 'gs'], {"default": "s3"}),
|
|
},
|
|
"optional": {
|
|
"video": ("*",),
|
|
"image": ("IMAGE",),
|
|
"audio": ("AUDIO",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("STRING",)
|
|
RETURN_NAMES = ("file_url",)
|
|
FUNCTION = "upload_file"
|
|
CATEGORY = "不忘科技-自定义节点🚩/utils/通用文件上传"
|
|
|
|
def tensor_to_pil(self, tensor: torch.Tensor) -> Image.Image:
|
|
image_np = tensor[0].cpu().numpy()
|
|
image_np = (image_np * 255).astype(np.uint8)
|
|
return Image.fromarray(image_np)
|
|
|
|
def save_pil_to_temp(self, pil_image: Image.Image) -> str:
|
|
output_dir = folder_paths.get_temp_directory()
|
|
(full_output_folder, filename, _, _, _) = folder_paths.get_save_image_path("uploader_temp", output_dir)
|
|
filepath = os.path.join(full_output_folder, f"{filename}.png")
|
|
pil_image.save(filepath, 'PNG')
|
|
return filepath
|
|
|
|
def save_audio_tensor_to_temp(self, waveform_tensor: torch.Tensor, sample_rate: int) -> str:
|
|
if 'wavfile' not in globals():
|
|
raise ImportError("Scipy 库未安装。请在您的 ComfyUI 环境中运行 'pip install scipy' 来启用音频处理功能。")
|
|
|
|
waveform_np = waveform_tensor.cpu().numpy()
|
|
if waveform_np.ndim == 3: waveform_np = waveform_np[0]
|
|
if waveform_np.shape[0] < waveform_np.shape[1]: waveform_np = waveform_np.T
|
|
|
|
waveform_int16 = np.int16(waveform_np * 32767)
|
|
output_dir = folder_paths.get_temp_directory()
|
|
(full_output_folder, filename, _, _, _) = folder_paths.get_save_image_path("uploader_temp_audio", output_dir)
|
|
filepath = os.path.join(full_output_folder, f"{filename}.mp3")
|
|
wavfile.write(filepath, sample_rate, waveform_int16)
|
|
return filepath
|
|
|
|
def upload_file(self, perpetual, cdn_type: str = 's3', image=None, audio=None, video=None):
|
|
resolved_path = None
|
|
if video is not None:
|
|
print('[FileUploadNode INFO] 检测到视频输入...')
|
|
unwrapped_input = video[0] if isinstance(video, (list, tuple)) and video else video
|
|
if hasattr(unwrapped_input, 'save_to'):
|
|
try:
|
|
output_dir = folder_paths.get_temp_directory()
|
|
(full_output_folder, filename, _, _, _) = folder_paths.get_save_image_path("uploader_temp_video",
|
|
output_dir)
|
|
temp_video_path = os.path.join(full_output_folder, f"{filename}.mp4")
|
|
unwrapped_input.save_to(temp_video_path)
|
|
resolved_path = temp_video_path
|
|
except Exception as e:
|
|
return (f"ERROR: 保存视频时出错: {e}",)
|
|
else:
|
|
return (f"ERROR: 不支持的视频输入格式,无法找到 save_to() 方法。",)
|
|
|
|
elif image is not None:
|
|
print('[FileUploadNode INFO] 检测到图像输入,正在保存为临时文件...')
|
|
pil_image = self.tensor_to_pil(image)
|
|
resolved_path = self.save_pil_to_temp(pil_image)
|
|
|
|
elif audio is not None:
|
|
print('[FileUploadNode INFO] 检测到音频输入...')
|
|
audio_info = audio[0] if isinstance(audio, (list, tuple)) and audio else audio
|
|
if isinstance(audio_info, dict) and 'waveform' in audio_info and 'sample_rate' in audio_info:
|
|
print('[FileUploadNode INFO] 正在从 waveform 数据保存为临时 .wav 文件...')
|
|
try:
|
|
resolved_path = self.save_audio_tensor_to_temp(audio_info['waveform'], audio_info['sample_rate'])
|
|
except Exception as e:
|
|
return (f"ERROR: 保存音频张量时出错: {e}",)
|
|
else:
|
|
return (f"ERROR: 不支持的音频输入格式,需要包含 'waveform' 和 'sample_rate' 的字典。",)
|
|
|
|
else:
|
|
raise ValueError("ERROR: 没有提供有效的媒体输入 (视频/图像/音频)。")
|
|
# return ("ERROR: 没有提供有效的媒体输入 (视频/图像/音频)。",)
|
|
|
|
if not resolved_path or not os.path.exists(resolved_path):
|
|
return (f"ERROR: 解析后的文件路径无效或文件不存在: {resolved_path}",)
|
|
|
|
print(f"[FileUploadNode INFO] 最终待上传文件: {resolved_path}")
|
|
if cdn_type == 's3':
|
|
result = upload_file_s3_v2(
|
|
file_path=resolved_path,
|
|
remove=False,
|
|
perpetual=perpetual
|
|
)
|
|
else:
|
|
result = upload_file_gs(resolved_path)
|
|
if result['status']:
|
|
return (result['data'],)
|
|
else:
|
|
error_message = f"上传失败: {result['msg']}"
|
|
raise ValueError(error_message)
|
|
# return (f"ERROR: {error_message}",)
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"FileUploadNode": FileUploadNode
|
|
}
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"FileUploadNode": "文件上传(s3,gs)"
|
|
}
|