ComfyUI-CustomNode/nodes/image_face_nodes.py

158 lines
4.7 KiB
Python

import json
import os
import cv2
import numpy as np
import torch
from comfy import model_management
from ultralytics import YOLO
from ..utils.download_utils import download_file
from ..utils.face_occu_detect import face_occu_detect
class FaceDetect:
"""
人脸遮挡检测
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"main_seed": (
"INT",
{"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF},
),
"model": (["convnext_tiny", "convnext_base"],),
"length": ("INT", {"default": 10, "min": 3, "max": 60, "step": 1}),
"threshold": (
"FLOAT",
{"default": 94, "min": 55, "max": 99, "step": 0.1},
),
},
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
"STRING",
"STRING",
"STRING",
"STRING",
"STRING",
"INT",
"INT",
)
RETURN_NAMES = (
"图像",
"选中人脸",
"分类",
"概率",
"采用帧序号",
"全部帧序列",
"剪辑配置",
"起始帧序号",
"帧数量",
)
FUNCTION = "predict"
CATEGORY = "不忘科技-自定义节点🚩/图片/人脸"
def predict(self, image, main_seed, model, length, threshold):
image, image_selected, cls, prob, nums, period = face_occu_detect(
image, length=length, thres=threshold, model_name=model
)
print("全部帧序列", period)
if len(period) > 0:
start, end = period[main_seed % len(period)]
config = {"start": start, "end": end}
else:
raise RuntimeError("未找到符合要求的视频片段")
return (
image,
image_selected,
cls,
prob,
nums,
str(period),
json.dumps(config),
start,
end - start + 1,
)
class FaceExtract:
"""人脸提取 By YOLO"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("图片",)
FUNCTION = "crop"
CATEGORY = "不忘科技-自定义节点🚩/图片/人脸"
def crop(self, image):
device = model_management.get_torch_device()
image_np = 255.0 * image.cpu().numpy()
model_path = os.path.join(
os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
"model",
"yolov8n-face-lindevs.pt",
)
if not os.path.exists(model_path):
download_file(
"https://github.com/lindevs/yolov8-face/releases/latest/download/yolov8n-face-lindevs.pt",
model_path,
)
model = YOLO(model=model_path)
total_images = image_np.shape[0]
out_images = np.ndarray(shape=(total_images, 512, 512, 3))
print("shape", image_np.shape)
idx = 0
for image_item in image_np:
results = model.predict(
image_item, imgsz=640, conf=0.75, iou=0.7, device=device, verbose=False
)
n = 512
r = results[0]
if len(r.boxes.data.cpu().numpy()) == 1:
y1, x1, y2, x2, p, cls = r.boxes.data.cpu().numpy()[0]
face_size = int(max(y2 - y1, x2 - x1))
center = (x1 + x2) // 2, (y1 + y2) // 2
x1, x2, y1, y2 = (
center[0] - face_size // 2,
center[0] + face_size // 2,
center[1] - face_size // 2,
center[1] + face_size // 2,
)
template = np.ndarray(shape=(face_size, face_size, 3))
template.fill(20)
for a, a1 in zip(list(range(int(x1), int(x2))), list(range(face_size))):
for b, b1 in zip(
list(range(int(y1), int(y2))), list(range(face_size))
):
if (a >= 0 and a < r.orig_img.shape[0]) and (
b >= 0 and b < r.orig_img.shape[1]
):
template[a1][b1] = r.orig_img[a][b]
print(int(x1), int(x2), int(y1), int(y2))
img = cv2.resize(template, (n, n))
out_images[idx] = img
idx += 1
else:
idx += 1
cropped_face = np.array(out_images).astype(np.float32) / 255.0
cropped_face = torch.from_numpy(cropped_face)
return (cropped_face,)