import os import uuid from PIL import Image import numpy as np import torch class SaveImagePath: @classmethod def INPUT_TYPES(s): return { "required": { "image_path": ("IMAGE", {"forceInput": True}), } } RETURN_TYPES = ("STRING",) FUNCTION = "load" CATEGORY = "不忘科技-自定义节点🚩" def load(self, image_path): # 如果是torch.Tensor类型,转换为numpy数组 if isinstance(image_path, torch.Tensor): image_path = image_path.cpu().numpy() # 去除多余的维度,如果形状是(1, 1, height, width, channels)或(1, height, width, channels)等情况 while len(image_path.shape) > 3: image_path = image_path.squeeze(0) # 如果是通道优先格式 (C, H, W),转换为通道最后格式 (H, W, C) if len(image_path.shape) == 3 and image_path.shape[0] <= 4: image_path = np.transpose(image_path, (1, 2, 0)) # 如果是单通道图像,转换为3通道 if len(image_path.shape) == 2: image_path = np.stack([image_path] * 3, axis=-1) # 数据范围和类型转换 - 这是关键修复 if image_path.dtype == np.float32 or image_path.dtype == np.float64: # ComfyUI图像数据通常是0-1范围的浮点数 if image_path.max() <= 1.0: # 从0-1范围转换到0-255范围 image_path = (image_path * 255.0).astype(np.uint8) else: # 如果已经是0-255范围,直接转换类型 image_path = np.clip(image_path, 0, 255).astype(np.uint8) elif image_path.dtype != np.uint8: # 其他数据类型,确保在0-255范围内 image_path = np.clip(image_path, 0, 255).astype(np.uint8) pil_image = Image.fromarray(image_path) # output_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "output") # base_dir = os.path.dirname(os.path.abspath(__file__)) output_dir = 'root/comfy/ComfyUI/output' if not os.path.exists(output_dir): os.makedirs(output_dir) file_name = "%s.jpg" % str(uuid.uuid4()) p = os.path.join(output_dir, file_name) pil_image.save(p) return (p,) # 节点类定义结束,以下是用于注册节点的字典结构(通常在实际使用中由ComfyUI等框架来解析和注册) NODE_CLASS_MAPPINGS = { "SaveImagePath": SaveImagePath } NODE_DISPLAY_NAME_MAPPINGS = { "SaveImagePath": "保存图片路径" }