import json import os import cv2 import numpy as np import torch from comfy import model_management from ultralytics import YOLO from ..utils.download_utils import download_file from ..utils.face_occu_detect import face_occu_detect class FaceDetect: """ 人脸遮挡检测 """ @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "main_seed": ( "INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}, ), "model": (["convnext_tiny", "convnext_base"],), "length": ("INT", {"default": 10, "min": 3, "max": 60, "step": 1}), "threshold": ( "FLOAT", {"default": 94, "min": 55, "max": 99, "step": 0.1}, ), }, } RETURN_TYPES = ( "IMAGE", "IMAGE", "STRING", "STRING", "STRING", "STRING", "STRING", "INT", "INT", ) RETURN_NAMES = ( "图像", "选中人脸", "分类", "概率", "采用帧序号", "全部帧序列", "剪辑配置", "起始帧序号", "帧数量", ) FUNCTION = "predict" CATEGORY = "不忘科技-自定义节点🚩/图片/人脸" def predict(self, image, main_seed, model, length, threshold): image, image_selected, cls, prob, nums, period = face_occu_detect( image, length=length, thres=threshold, model_name=model ) print("全部帧序列", period) if len(period) > 0: start, end = period[main_seed % len(period)] config = {"start": start, "end": end} else: raise RuntimeError("未找到符合要求的视频片段") return ( image, image_selected, cls, prob, nums, str(period), json.dumps(config), start, end - start + 1, ) class FaceExtract: """人脸提取 By YOLO""" @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), } } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("图片",) FUNCTION = "crop" CATEGORY = "不忘科技-自定义节点🚩/图片/人脸" def crop(self, image): device = model_management.get_torch_device() image_np = 255.0 * image.cpu().numpy() model_path = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "model", "yolov8n-face-lindevs.pt", ) if not os.path.exists(model_path): download_file( "https://github.com/lindevs/yolov8-face/releases/latest/download/yolov8n-face-lindevs.pt", model_path, ) model = YOLO(model=model_path) total_images = image_np.shape[0] out_images = np.ndarray(shape=(total_images, 512, 512, 3)) print("shape", image_np.shape) idx = 0 for image_item in image_np: results = model.predict( image_item, imgsz=640, conf=0.75, iou=0.7, device=device, verbose=False ) n = 512 r = results[0] if len(r.boxes.data.cpu().numpy()) == 1: y1, x1, y2, x2, p, cls = r.boxes.data.cpu().numpy()[0] face_size = int(max(y2 - y1, x2 - x1)) center = (x1 + x2) // 2, (y1 + y2) // 2 x1, x2, y1, y2 = ( center[0] - face_size // 2, center[0] + face_size // 2, center[1] - face_size // 2, center[1] + face_size // 2, ) template = np.ndarray(shape=(face_size, face_size, 3)) template.fill(20) for a, a1 in zip(list(range(int(x1), int(x2))), list(range(face_size))): for b, b1 in zip( list(range(int(y1), int(y2))), list(range(face_size)) ): if (a >= 0 and a < r.orig_img.shape[0]) and ( b >= 0 and b < r.orig_img.shape[1] ): template[a1][b1] = r.orig_img[a][b] print(int(x1), int(x2), int(y1), int(y2)) img = cv2.resize(template, (n, n)) out_images[idx] = img idx += 1 else: idx += 1 cropped_face = np.array(out_images).astype(np.float32) / 255.0 cropped_face = torch.from_numpy(cropped_face) return (cropped_face,)