ADD 增加midjourney文生图和描述图片节点

This commit is contained in:
kyj@bowong.ai 2025-07-14 11:05:46 +08:00
parent 5bfeb88724
commit c7051da39f
3 changed files with 275 additions and 140 deletions

View File

@ -1,8 +1,9 @@
from .nodes.image_modal_nodes import ModalEditCustom, ModalClothesMask, ModalMidJourneyGenerateImage, \
ModalMidJourneyDescribeImage
from .nodes.image_face_nodes import FaceDetect, FaceExtract
from .nodes.image_gesture_nodes import JMGestureCorrect
from .nodes.image_nodes import SaveImagePath, LoadNetImg, SaveImageWithOutput
from .nodes.llm_nodes import LLMChat, LLMChatMultiModalImageUpload, LLMChatMultiModalImageTensor, Jinja2RenderTemplate, \
ModalClothesMask, ModalEditCustom
from .nodes.llm_nodes import LLMChat, LLMChatMultiModalImageUpload, LLMChatMultiModalImageTensor, Jinja2RenderTemplate
from .nodes.object_storage_nodes import COSUpload, COSDownload, S3Download, S3Upload, S3UploadURL
from .nodes.text_nodes import StringEmptyJudgement, LoadTextLocal, LoadTextOnline, RandomLineSelector
from .nodes.util_nodes import LogToDB, TaskIdGenerate, TraverseFolder, UnloadAllModels, VodToLocalNode, \
@ -43,7 +44,9 @@ NODE_CLASS_MAPPINGS = {
"Jinja2RenderTemplate": Jinja2RenderTemplate,
"JMGestureCorrect": JMGestureCorrect,
"ModalClothesMask": ModalClothesMask,
"ModalEditCustom": ModalEditCustom
"ModalEditCustom": ModalEditCustom,
"ModalMidJourneyGenerateImage": ModalMidJourneyGenerateImage,
"ModalMidJourneyDescribeImage": ModalMidJourneyDescribeImage
}
NODE_DISPLAY_NAME_MAPPINGS = {
@ -79,5 +82,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"Jinja2RenderTemplate": "Jinja2格式Prompt模板渲染",
"JMGestureCorrect": "人物侧身图片转为正面图-即梦",
"ModalClothesMask": "模特指定衣服替换为指定颜色",
"ModalEditCustom": "自定义Prompt修改图片"
"ModalEditCustom": "自定义Prompt修改图片",
"ModalMidJourneyGenerateImage": "Prompt生图",
"ModalMidJourneyDescribeImage": "描述图片内容"
}

266
nodes/image_modal_nodes.py Normal file
View File

@ -0,0 +1,266 @@
import io
import json
from time import sleep
import folder_paths
import requests
import torch
from PIL import Image
from loguru import logger
from torchvision import transforms
from ..utils.http_utils import send_request
from ..utils.image_utils import tensor_to_image_bytes, base64_to_tensor
def url_to_tensor(image_url: str, max_retries: int = 3):
"""
从URL下载图片并转换为PyTorch张量增强错误处理能力
参数:
image_url (str): 图片URL
max_retries (int): 最大重试次数
返回:
torch.Tensor: 形状为[C, H, W]的张量
异常:
HTTPError: 网络请求失败
ValueError: 无效图片格式
"""
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
for attempt in range(max_retries):
try:
# 发送带User-Agent的请求
response = requests.get(image_url, headers=headers, stream=True, timeout=15)
response.raise_for_status()
# 检查内容类型是否为图像
content_type = response.headers.get('Content-Type', '')
if not content_type.startswith('image/'):
raise ValueError(f"URL返回非图像内容: {content_type}")
# 验证图像完整性
img_data = response.content
if len(img_data) < 100: # 极小数据通常不是有效图像
raise ValueError("下载的内容过小,可能不是完整图像")
# 尝试打开图像
img = Image.open(io.BytesIO(img_data)).convert('RGB')
# 转换为张量
transform = transforms.Compose([
transforms.ToTensor()
])
return transform(img).unsqueeze(0).permute(0, 2, 3, 1)
except (requests.exceptions.RequestException, ValueError) as e:
logger.warning(f"尝试 {attempt + 1}/{max_retries} 失败: {e}")
if attempt == max_retries - 1:
raise e
class ModalClothesMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mask_color": ("STRING", {"default": "绿色"}),
"clothes_type": ("STRING", {"default": "裤子"}),
"endpoint": ("STRING", {"default": "bowongai-dev--bowong-ai-video-gemini-fastapi-webapp.modal.run"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "process"
OUTPUT_NODE = False
CATEGORY = "不忘科技-自定义节点🚩/图片/Gemini图像编辑"
def process(self, image: torch.Tensor, mask_color: str, clothes_type: str, endpoint: str):
try:
timeout = 60
logger.info("获取token")
api_key = send_request("get", f"https://{endpoint}/google/access-token",
headers={'Authorization': 'Bearer bowong7777'}, timeout=timeout).json()[
"access_token"]
format = "PNG"
logger.info("请求图像编辑")
job_resp = send_request("post", f"https://{endpoint}/google/image/clothes_mark",
headers={'x-google-api-key': api_key},
data={
"mark_clothes_type": clothes_type,
"mark_color": mask_color,
},
files={"origin_image": (
'image.' + format.lower(), tensor_to_image_bytes(image, format),
f'image/{format.lower()}')},
timeout=timeout)
job_resp.raise_for_status()
job_resp = job_resp.json()
if not job_resp["success"]:
raise Exception("请求Modal API失败")
job_id = job_resp["taskId"]
wait_time = 240
interval = 2
logger.info("开始轮询任务状态")
sleep(1)
for _ in range(0, wait_time, interval):
logger.info("查询任务状态")
result = send_request("get", f"https://{endpoint}/google/{job_id}",
headers={'Authorization': 'Bearer bowong7777'}, timeout=timeout)
if result.status_code == 200:
result = result.json()
if result["status"] == "success":
logger.success("任务成功")
image_b64 = json.loads(result["result"])[0]["image_b64"]
image_tensor = base64_to_tensor(image_b64)
return (image_tensor,)
elif "fail" in result["status"].lower():
raise Exception("任务失败")
sleep(interval)
raise Exception("查询任务状态超时")
except Exception as e:
raise Exception(e)
class ModalEditCustom:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"prompt": ("STRING", {"default": "将背景去除,输出原尺寸图片", "multiline": True}),
"temperature": ("FLOAT", {"default": 0.1, "min": 0, "max": 2}),
"topP": ("FLOAT", {"default": 0.7, "min": 0, "max": 1}),
"endpoint": ("STRING", {"default": "bowongai-dev--bowong-ai-video-gemini-fastapi-webapp.modal.run"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "process"
OUTPUT_NODE = False
CATEGORY = "不忘科技-自定义节点🚩/图片/Gemini图像编辑"
def process(self, image: torch.Tensor, prompt: str, temperature: float, topP: float, endpoint: str):
try:
timeout = 60
logger.info("获取token")
api_key = send_request("get", f"https://{endpoint}/google/access-token",
headers={'Authorization': 'Bearer bowong7777'}, timeout=timeout).json()[
"access_token"]
format = "PNG"
logger.info("请求图像编辑")
job_resp = send_request("post", f"https://{endpoint}/google/image/edit_custom",
headers={'x-google-api-key': api_key},
data={
"prompt": prompt,
"temperature": temperature,
"topP": topP
},
files={"origin_image": (
'image.' + format.lower(), tensor_to_image_bytes(image, format),
f'image/{format.lower()}')},
timeout=timeout)
job_resp.raise_for_status()
job_resp = job_resp.json()
if not job_resp["success"]:
raise Exception("请求Modal API失败")
job_id = job_resp["taskId"]
wait_time = 240
interval = 2
logger.info("开始轮询任务状态")
sleep(1)
for _ in range(0, wait_time, interval):
logger.info("查询任务状态")
result = send_request("get", f"https://{endpoint}/google/{job_id}",
headers={'Authorization': 'Bearer bowong7777'}, timeout=timeout)
if result.status_code == 200:
result = result.json()
if result["status"] == "success":
logger.success("任务成功")
image_b64 = json.loads(result["result"])[0]["image_b64"]
image_tensor = base64_to_tensor(image_b64)
return (image_tensor,)
elif "fail" in result["status"].lower():
raise Exception("任务失败")
sleep(interval)
raise Exception("查询任务状态超时")
except Exception as e:
raise Exception(e)
class ModalMidJourneyGenerateImage:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"prompt": ("STRING", {"default": "一幅宏大壮美的山川画卷", "multiline": True}),
"endpoint": ("STRING", {"default": "bowongai-dev--bowong-ai-video-gemini-fastapi-webapp.modal.run"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "process"
OUTPUT_NODE = False
CATEGORY = "不忘科技-自定义节点🚩/图片/Midjourney"
def process(self, prompt: str, endpoint: str):
try:
logger.info("请求同步接口")
job_resp = send_request("post", f"https://{endpoint}/mj_router/sync/generate/image",
headers={'Authorization': 'Bearer bowong7777'},
data={
"prompt": prompt,
},
timeout=60)
job_resp.raise_for_status()
job_resp = job_resp.json()
if "失败" in job_resp["msg"] or "fail" in job_resp["msg"] or "error" in job_resp["msg"]:
raise Exception("生成失败")
result_url = job_resp["data"]
logger.success("img_url: "+result_url)
return (url_to_tensor(result_url),)
except Exception as e:
raise e
class ModalMidJourneyDescribeImage:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"img_url": ("STRING", {"default": "https://vcg03.cfp.cn/creative/vcg/800/new/VCG41N948031096.jpg", "multiline": True}),
"endpoint": ("STRING", {"default": "bowongai-dev--bowong-ai-video-gemini-fastapi-webapp.modal.run"}),
},
}
RETURN_TYPES = ("TEXT",)
RETURN_NAMES = ("描述内容",)
FUNCTION = "process"
OUTPUT_NODE = False
CATEGORY = "不忘科技-自定义节点🚩/图片/Midjourney"
def process(self, img_url: str, endpoint: str):
try:
logger.info("请求同步接口")
job_resp = send_request("post", f"https://{endpoint}/mj_router/sync/describe/image",
headers={'Authorization': 'Bearer bowong7777'},
data={
"image_url": img_url,
},
timeout=60)
job_resp.raise_for_status()
job_resp = job_resp.json()
if "失败" in job_resp["msg"] or "fail" in job_resp["msg"] or "error" in job_resp["msg"]:
raise Exception("描述失败")
result = job_resp["data"]
return (result,)
except Exception as e:
raise e

View File

@ -5,22 +5,16 @@ import json
import os
import re
from mimetypes import guess_type
from time import sleep
from typing import Any, Union
import folder_paths
import httpx
import numpy as np
import requests
import torch
from PIL import Image
from jinja2 import Template, StrictUndefined
from loguru import logger
from retry import retry
from ..utils.http_utils import send_request
from ..utils.image_utils import tensor_to_image_bytes, base64_to_tensor
def find_value_recursive(key: str, data: Union[dict, list]) -> str | None | Any:
if isinstance(data, dict):
@ -283,133 +277,3 @@ class Jinja2RenderTemplate:
# 渲染模板
return (template.render(kv_map),)
class ModalClothesMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mask_color": ("STRING", {"default": "绿色"}),
"clothes_type": ("STRING", {"default": "裤子"}),
"endpoint": ("STRING", {"default": "bowongai-dev--bowong-ai-video-gemini-fastapi-webapp.modal.run"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "process"
OUTPUT_NODE = False
CATEGORY = "不忘科技-自定义节点🚩/图片/Gemini图像编辑"
def process(self, image: torch.Tensor, mask_color: str, clothes_type: str, endpoint: str):
try:
timeout = 60
logger.info("获取token")
api_key = send_request("get", f"https://{endpoint}/google/access-token",
headers={'Authorization': 'Bearer bowong7777'}, timeout=timeout).json()[
"access_token"]
format = "PNG"
logger.info("请求图像编辑")
job_resp = send_request("post", f"https://{endpoint}/google/image/clothes_mark",
headers={'x-google-api-key': api_key},
data={
"mark_clothes_type": clothes_type,
"mark_color": mask_color,
},
files={"origin_image": (
'image.' + format.lower(), tensor_to_image_bytes(image, format),
f'image/{format.lower()}')},
timeout=timeout)
job_resp.raise_for_status()
job_resp = job_resp.json()
if not job_resp["success"]:
raise Exception("请求Modal API失败")
job_id = job_resp["taskId"]
wait_time = 240
interval = 2
logger.info("开始轮询任务状态")
sleep(1)
for _ in range(0, wait_time, interval):
logger.info("查询任务状态")
result = send_request("get", f"https://{endpoint}/google/{job_id}",
headers={'Authorization': 'Bearer bowong7777'}, timeout=timeout)
if result.status_code == 200:
result = result.json()
if result["status"] == "success":
logger.success("任务成功")
image_b64 = json.loads(result["result"])[0]["image_b64"]
image_tensor = base64_to_tensor(image_b64)
return (image_tensor,)
elif "fail" in result["status"].lower():
raise Exception("任务失败")
sleep(interval)
raise Exception("查询任务状态超时")
except Exception as e:
raise Exception(e)
class ModalEditCustom:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"prompt": ("STRING", {"default": "将背景去除,输出原尺寸图片", "multiline": True}),
"endpoint": ("STRING", {"default": "bowongai-dev--bowong-ai-video-gemini-fastapi-webapp.modal.run"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "process"
OUTPUT_NODE = False
CATEGORY = "不忘科技-自定义节点🚩/图片/Gemini图像编辑"
def process(self, image: torch.Tensor, prompt: str, endpoint: str):
try:
timeout = 60
logger.info("获取token")
api_key = send_request("get", f"https://{endpoint}/google/access-token",
headers={'Authorization': 'Bearer bowong7777'}, timeout=timeout).json()[
"access_token"]
format = "PNG"
logger.info("请求图像编辑")
job_resp = send_request("post", f"https://{endpoint}/google/image/edit_custom",
headers={'x-google-api-key': api_key},
data={
"prompt": prompt
},
files={"origin_image": (
'image.' + format.lower(), tensor_to_image_bytes(image, format),
f'image/{format.lower()}')},
timeout=timeout)
job_resp.raise_for_status()
job_resp = job_resp.json()
if not job_resp["success"]:
raise Exception("请求Modal API失败")
job_id = job_resp["taskId"]
wait_time = 240
interval = 2
logger.info("开始轮询任务状态")
sleep(1)
for _ in range(0, wait_time, interval):
logger.info("查询任务状态")
result = send_request("get", f"https://{endpoint}/google/{job_id}",
headers={'Authorization': 'Bearer bowong7777'}, timeout=timeout)
if result.status_code == 200:
result = result.json()
if result["status"] == "success":
logger.success("任务成功")
image_b64 = json.loads(result["result"])[0]["image_b64"]
image_tensor = base64_to_tensor(image_b64)
return (image_tensor,)
elif "fail" in result["status"].lower():
raise Exception("任务失败")
sleep(interval)
raise Exception("查询任务状态超时")
except Exception as e:
raise Exception(e)