PERF 清理代码,完善注释

This commit is contained in:
康宇佳 2025-02-18 17:27:19 +08:00
parent eed481f9b0
commit 6f83efdd94
1 changed files with 13 additions and 74 deletions

View File

@ -23,59 +23,11 @@ video_extensions = ['webm', 'mp4', 'mkv', 'gif', 'mov']
class FaceDetect:
"""
A example node
Class methods
-------------
INPUT_TYPES (dict):
Tell the main program input parameters of nodes.
IS_CHANGED:
optional method to control when the node is re executed.
Attributes
----------
RETURN_TYPES (`tuple`):
The type of each element in the output tuple.
RETURN_NAMES (`tuple`):
Optional: The name of each output in the output tuple.
FUNCTION (`str`):
The name of the entry-point method. For example, if `FUNCTION = "execute"` then it will run Example().execute()
OUTPUT_NODE ([`bool`]):
If this node is an output node that outputs a result/image from the graph. The SaveImage node is an example.
The backend iterates on these output nodes and tries to execute all their parents if their parent graph is properly connected.
Assumed to be False if not present.
CATEGORY (`str`):
The category the node should appear in the UI.
DEPRECATED (`bool`):
Indicates whether the node is deprecated. Deprecated nodes are hidden by default in the UI, but remain
functional in existing workflows that use them.
EXPERIMENTAL (`bool`):
Indicates whether the node is experimental. Experimental nodes are marked as such in the UI and may be subject to
significant changes or removal in future versions. Use with caution in production workflows.
execute(s) -> tuple || None:
The entry point method. The name of this method must be the same as the value of property `FUNCTION`.
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`.
人脸遮挡检测
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
"""
Return a dictionary which contains config for all input fields.
Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
Input types "INT", "STRING" or "FLOAT" are special values for fields on the node.
The type can be a list for selection.
Returns: `dict`:
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
- Value input_fields (`dict`): Contains input fields config:
* Key field_name (`string`): Name of a entry-point method's argument
* Value field_config (`tuple`):
+ First value is a string indicate the type of field or a list for selection.
+ Second value is a config for type "INT", "STRING" or "FLOAT".
"""
return {
"required": {
"image": ("IMAGE",),
@ -91,9 +43,7 @@ class FaceDetect:
FUNCTION = "predict"
# OUTPUT_NODE = False
CATEGORY = "自定义节点"
CATEGORY = "不忘科技-自定义节点🚩"
def predict(self, image, main_seed, model, length, threshold):
image, image_selected, cls, prob, nums, period = test_node(image, length=length, thres=threshold,
@ -103,26 +53,13 @@ class FaceDetect:
start, end = period[main_seed % len(period)]
config = {"start": start, "end": end}
else:
config = {}
start = 0
end = 0
raise RuntimeError("未找到符合要求的视频片段")
return (image, image_selected, cls, prob, nums, str(period), json.dumps(config), start, end - start)
"""
The node will always be re executed if any of the inputs change but
this method can be used to force the node to execute again even when the inputs don't change.
You can make this node return a number or a string. This value will be compared to the one returned the last time the node was
executed, if it is different the node will be executed again.
This method is used in the core repo for the LoadImage node where they return the image hash as a string, if the image hash
changes between executions the LoadImage node is executed again.
"""
# @classmethod
# def IS_CHANGED(s, image, string_field, int_field, float_field, print_to_screen):
# return ""
class FaceExtract:
"""人脸提取 By YOLO"""
class FaceExtract():
@classmethod
def INPUT_TYPES(s):
return {
@ -136,7 +73,7 @@ class FaceExtract():
FUNCTION = "crop"
CATEGORY = "自定义节点"
CATEGORY = "不忘科技-自定义节点🚩"
def crop(self, image):
device = model_management.get_torch_device()
@ -182,6 +119,8 @@ class FaceExtract():
class COSDownload:
"""腾讯云COS下载"""
@classmethod
def INPUT_TYPES(s):
return {
@ -193,7 +132,7 @@ class COSDownload:
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("视频存储路径",)
FUNCTION = "download"
CATEGORY = "自定义节点"
CATEGORY = "不忘科技-自定义节点🚩"
def download(self, cos_key):
if os.sep in cos_key or "/" in cos_key or "\\" in cos_key:
@ -220,6 +159,8 @@ class COSDownload:
class COSUpload:
"""腾讯云COS上传"""
@classmethod
def INPUT_TYPES(s):
return {
@ -232,7 +173,7 @@ class COSUpload:
RETURN_NAMES = ("COS文件Key",)
FUNCTION = "upload"
CATEGORY = "自定义节点"
CATEGORY = "不忘科技-自定义节点🚩"
def upload(self, path):
for i in range(0, 10):
@ -254,10 +195,8 @@ class COSUpload:
return ("/".join([yaml_config["subfolder"], path.split("/")[-1] if "/" in path else path.split("\\")[-1]]),)
# 有问题
class VideoCut:
def __init__(self):
pass
"""FFMPEG视频剪辑 -- !有卡顿问题 暂废弃"""
@classmethod
def INPUT_TYPES(s):
@ -278,7 +217,7 @@ class VideoCut:
# OUTPUT_NODE = False
CATEGORY = "自定义节点"
CATEGORY = "不忘科技-自定义节点🚩"
def cut(self, config, video_path, mod, fps, period_length):
# 原文件名