ADD 增加两个图像编辑节点
This commit is contained in:
parent
c91e506fd5
commit
1b0f7ea4ae
11
__init__.py
11
__init__.py
|
|
@ -1,7 +1,8 @@
|
|||
from .nodes.image_face_nodes import FaceDetect, FaceExtract
|
||||
from .nodes.image_gesture_nodes import JMGestureCorrect
|
||||
from .nodes.image_nodes import SaveImagePath, LoadNetImg, SaveImageWithOutput
|
||||
from .nodes.llm_nodes import LLMChat, LLMChatMultiModalImageUpload, LLMChatMultiModalImageTensor, Jinja2RenderTemplate
|
||||
from .nodes.llm_nodes import LLMChat, LLMChatMultiModalImageUpload, LLMChatMultiModalImageTensor, Jinja2RenderTemplate, \
|
||||
ModalClothesMask, ModalEditCustom
|
||||
from .nodes.object_storage_nodes import COSUpload, COSDownload, S3Download, S3Upload, S3UploadURL
|
||||
from .nodes.text_nodes import StringEmptyJudgement, LoadTextLocal, LoadTextOnline, RandomLineSelector
|
||||
from .nodes.util_nodes import LogToDB, TaskIdGenerate, TraverseFolder, UnloadAllModels, VodToLocalNode, \
|
||||
|
|
@ -40,7 +41,9 @@ NODE_CLASS_MAPPINGS = {
|
|||
"LLMChatMultiModalImageUpload": LLMChatMultiModalImageUpload,
|
||||
"LLMChatMultiModalImageTensor": LLMChatMultiModalImageTensor,
|
||||
"Jinja2RenderTemplate": Jinja2RenderTemplate,
|
||||
"JMGestureCorrect": JMGestureCorrect
|
||||
"JMGestureCorrect": JMGestureCorrect,
|
||||
"ModalClothesMask": ModalClothesMask,
|
||||
"ModalEditCustom": ModalEditCustom
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
|
|
@ -74,5 +77,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
|||
"LLMChatMultiModalImageUpload": "多模态LLM调用-图片Path",
|
||||
"LLMChatMultiModalImageTensor": "多模态LLM调用-图片Tensor",
|
||||
"Jinja2RenderTemplate": "Jinja2格式Prompt模板渲染",
|
||||
"JMGestureCorrect": "人物侧身图片转为正面图-即梦"
|
||||
"JMGestureCorrect": "人物侧身图片转为正面图-即梦",
|
||||
"ModalClothesMask": "模特指定衣服替换为指定颜色",
|
||||
"ModalEditCustom": "自定义Prompt修改图片"
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
# 文件名 comfyui_v2.py
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
import modal
|
||||
|
|
@ -13,7 +14,7 @@ image = (
|
|||
.run_commands(
|
||||
"comfy --skip-prompt install --fast-deps --nvidia --version 0.3.40"
|
||||
)
|
||||
.pip_install_from_pyproject("./pyproject.toml")
|
||||
.pip_install_from_pyproject(os.path.join(os.path.dirname(__file__),"pyproject.toml"))
|
||||
.run_commands("comfy node install https://e.coding.net/g-ldyi2063/dev/ComfyUI-CustomNode.git", force_build=True)
|
||||
.run_commands("comfy node install https://github.com/yolain/ComfyUI-Easy-Use.git")
|
||||
.run_commands("cp -f /root/comfy/ComfyUI/custom_nodes/ComfyUI-CustomNode/ext/nodes_bfl.py /root/comfy/ComfyUI/comfy_api_nodes/nodes_bfl.py")
|
||||
|
|
|
|||
|
|
@ -5,18 +5,23 @@ import json
|
|||
import os
|
||||
import re
|
||||
from mimetypes import guess_type
|
||||
from time import sleep
|
||||
from typing import Any, Union
|
||||
|
||||
import folder_paths
|
||||
import httpx
|
||||
import numpy as np
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
from jinja2 import Template, StrictUndefined
|
||||
from loguru import logger
|
||||
from retry import retry
|
||||
|
||||
from ..utils.image_utils import tensor_to_image_bytes, base64_to_tensor
|
||||
|
||||
def find_value_recursive(key:str, data:Union[dict, list]) -> str | None | Any:
|
||||
|
||||
def find_value_recursive(key: str, data: Union[dict, list]) -> str | None | Any:
|
||||
if isinstance(data, dict):
|
||||
if key in data:
|
||||
return data[key]
|
||||
|
|
@ -31,6 +36,7 @@ def find_value_recursive(key:str, data:Union[dict, list]) -> str | None | Any:
|
|||
if result is not None:
|
||||
return result
|
||||
|
||||
|
||||
def image_tensor_to_base64(image):
|
||||
pil_image = Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
|
||||
# 创建一个BytesIO对象,用于临时存储图像数据
|
||||
|
|
@ -47,6 +53,7 @@ def image_tensor_to_base64(image):
|
|||
|
||||
return encoded_image
|
||||
|
||||
|
||||
class LLMChat:
|
||||
"""llm chat"""
|
||||
|
||||
|
|
@ -63,8 +70,8 @@ class LLMChat:
|
|||
"deepseek-v3",
|
||||
"deepseek-r1"],),
|
||||
"prompt": ("STRING", {"multiline": True}),
|
||||
"temperature": ("FLOAT",{"default": 0.7, "min": 0.0, "max": 1.0}),
|
||||
"max_tokens": ("INT",{"default": 4096, "min":1, "max":65535}),
|
||||
"temperature": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0}),
|
||||
"max_tokens": ("INT", {"default": 4096, "min": 1, "max": 65535}),
|
||||
"timeout": ("INT", {"default": 120, "min": 30, "max": 900}),
|
||||
}
|
||||
}
|
||||
|
|
@ -74,28 +81,28 @@ class LLMChat:
|
|||
FUNCTION = "chat"
|
||||
CATEGORY = "不忘科技-自定义节点🚩/LLM"
|
||||
|
||||
def chat(self, llm_provider:str, prompt:str, temperature:float, max_tokens:int, timeout:int):
|
||||
def chat(self, llm_provider: str, prompt: str, temperature: float, max_tokens: int, timeout: int):
|
||||
@retry(Exception, tries=3, delay=1)
|
||||
def _chat():
|
||||
try:
|
||||
with httpx.Client(timeout=httpx.Timeout(timeout, connect=15)) as session:
|
||||
resp = session.post("https://gateway.bowong.cc/chat/completions",
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json",
|
||||
"Authorization": "Bearer auth-bowong7777"
|
||||
},
|
||||
json={
|
||||
"model": llm_provider,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": prompt
|
||||
}
|
||||
],
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens
|
||||
})
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json",
|
||||
"Authorization": "Bearer auth-bowong7777"
|
||||
},
|
||||
json={
|
||||
"model": llm_provider,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": prompt
|
||||
}
|
||||
],
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens
|
||||
})
|
||||
resp.raise_for_status()
|
||||
resp = resp.json()
|
||||
content = find_value_recursive("content", resp)
|
||||
|
|
@ -103,8 +110,10 @@ class LLMChat:
|
|||
except Exception as e:
|
||||
raise Exception("llm调用失败 {}".format(e))
|
||||
return (content,)
|
||||
|
||||
return _chat()
|
||||
|
||||
|
||||
class LLMChatMultiModalImageUpload:
|
||||
"""llm chat"""
|
||||
|
||||
|
|
@ -119,8 +128,8 @@ class LLMChatMultiModalImageUpload:
|
|||
"gpt-4.1"],),
|
||||
"prompt": ("STRING", {"multiline": True}),
|
||||
"image": (sorted(files), {"image_upload": True}),
|
||||
"temperature": ("FLOAT",{"default": 0.7, "min": 0.0, "max": 1.0}),
|
||||
"max_tokens": ("INT",{"default": 4096, "min":1, "max":65535}),
|
||||
"temperature": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0}),
|
||||
"max_tokens": ("INT", {"default": 4096, "min": 1, "max": 65535}),
|
||||
"timeout": ("INT", {"default": 120, "min": 30, "max": 900}),
|
||||
}
|
||||
}
|
||||
|
|
@ -130,7 +139,7 @@ class LLMChatMultiModalImageUpload:
|
|||
FUNCTION = "chat"
|
||||
CATEGORY = "不忘科技-自定义节点🚩/LLM"
|
||||
|
||||
def chat(self, llm_provider:str, prompt:str, image, temperature:float, max_tokens:int, timeout:int):
|
||||
def chat(self, llm_provider: str, prompt: str, image, temperature: float, max_tokens: int, timeout: int):
|
||||
@retry(Exception, tries=3, delay=1)
|
||||
def _chat():
|
||||
try:
|
||||
|
|
@ -140,28 +149,29 @@ class LLMChatMultiModalImageUpload:
|
|||
base64_encoded_data = base64.b64encode(image_file.read()).decode('utf-8')
|
||||
with httpx.Client(timeout=httpx.Timeout(timeout, connect=15)) as session:
|
||||
resp = session.post("https://gateway.bowong.cc/chat/completions",
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json",
|
||||
"Authorization": "Bearer auth-bowong7777"
|
||||
},
|
||||
json={
|
||||
"model": llm_provider,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": prompt},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url":f"data:{mime_type};base64,{base64_encoded_data}"},
|
||||
},
|
||||
]
|
||||
}
|
||||
],
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens
|
||||
})
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json",
|
||||
"Authorization": "Bearer auth-bowong7777"
|
||||
},
|
||||
json={
|
||||
"model": llm_provider,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": prompt},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:{mime_type};base64,{base64_encoded_data}"},
|
||||
},
|
||||
]
|
||||
}
|
||||
],
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens
|
||||
})
|
||||
resp.raise_for_status()
|
||||
resp = resp.json()
|
||||
content = find_value_recursive("content", resp)
|
||||
|
|
@ -170,8 +180,10 @@ class LLMChatMultiModalImageUpload:
|
|||
# logger.exception("llm调用失败 {}".format(e))
|
||||
raise Exception("llm调用失败 {}".format(e))
|
||||
return (content,)
|
||||
|
||||
return _chat()
|
||||
|
||||
|
||||
class LLMChatMultiModalImageTensor:
|
||||
"""llm chat"""
|
||||
|
||||
|
|
@ -183,8 +195,8 @@ class LLMChatMultiModalImageTensor:
|
|||
"gpt-4.1"],),
|
||||
"prompt": ("STRING", {"multiline": True}),
|
||||
"image": ("IMAGE",),
|
||||
"temperature": ("FLOAT",{"default": 0.7, "min": 0.0, "max": 1.0}),
|
||||
"max_tokens": ("INT",{"default": 4096, "min":1, "max":65535}),
|
||||
"temperature": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0}),
|
||||
"max_tokens": ("INT", {"default": 4096, "min": 1, "max": 65535}),
|
||||
"timeout": ("INT", {"default": 120, "min": 30, "max": 900}),
|
||||
}
|
||||
}
|
||||
|
|
@ -194,34 +206,35 @@ class LLMChatMultiModalImageTensor:
|
|||
FUNCTION = "chat"
|
||||
CATEGORY = "不忘科技-自定义节点🚩/LLM"
|
||||
|
||||
def chat(self, llm_provider:str, prompt:str, image:torch.Tensor, temperature:float, max_tokens:int, timeout:int):
|
||||
def chat(self, llm_provider: str, prompt: str, image: torch.Tensor, temperature: float, max_tokens: int,
|
||||
timeout: int):
|
||||
@retry(Exception, tries=3, delay=1)
|
||||
def _chat():
|
||||
try:
|
||||
with httpx.Client(timeout=httpx.Timeout(timeout, connect=15)) as session:
|
||||
resp = session.post("https://gateway.bowong.cc/chat/completions",
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json",
|
||||
"Authorization": "Bearer auth-bowong7777"
|
||||
},
|
||||
json={
|
||||
"model": llm_provider,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": prompt},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url":image_tensor_to_base64(image)},
|
||||
},
|
||||
]
|
||||
}
|
||||
],
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens
|
||||
})
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json",
|
||||
"Authorization": "Bearer auth-bowong7777"
|
||||
},
|
||||
json={
|
||||
"model": llm_provider,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": prompt},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": image_tensor_to_base64(image)},
|
||||
},
|
||||
]
|
||||
}
|
||||
],
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens
|
||||
})
|
||||
resp.raise_for_status()
|
||||
resp = resp.json()
|
||||
content = find_value_recursive("content", resp)
|
||||
|
|
@ -230,8 +243,10 @@ class LLMChatMultiModalImageTensor:
|
|||
# logger.exception("llm调用失败 {}".format(e))
|
||||
raise Exception("llm调用失败 {}".format(e))
|
||||
return (content,)
|
||||
|
||||
return _chat()
|
||||
|
||||
|
||||
class Jinja2RenderTemplate:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
|
|
@ -266,4 +281,130 @@ class Jinja2RenderTemplate:
|
|||
template = Template(template, undefined=StrictUndefined)
|
||||
|
||||
# 渲染模板
|
||||
return (template.render(kv_map),)
|
||||
return (template.render(kv_map),)
|
||||
|
||||
|
||||
class ModalClothesMask:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"image": ("IMAGE",),
|
||||
"mask_color": ("STRING", {"default": "绿色"}),
|
||||
"clothes_type": ("STRING", {"default": "裤子"}),
|
||||
"endpoint": ("STRING", {"default": "bowongai-dev--bowong-ai-video-gemini-fastapi-webapp.modal.run"}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
RETURN_NAMES = ("image",)
|
||||
FUNCTION = "process"
|
||||
OUTPUT_NODE = False
|
||||
CATEGORY = "不忘科技-自定义节点🚩/图片/Gemini图像编辑"
|
||||
|
||||
def process(self, image: torch.Tensor, mask_color: str, clothes_type: str, endpoint: str):
|
||||
try:
|
||||
timeout = 60
|
||||
logger.info("获取token")
|
||||
api_key = requests.get(f"https://{endpoint}/google/access-token",
|
||||
headers={'Authorization': 'Bearer bowong7777'}, timeout=timeout).json()[
|
||||
"access_token"]
|
||||
format = "PNG"
|
||||
logger.info("请求图像编辑")
|
||||
job_resp = requests.post(f"https://{endpoint}/google/image/clothes_mark",
|
||||
headers={'x-google-api-key': api_key},
|
||||
data={
|
||||
"mark_clothes_type": clothes_type,
|
||||
"mark_color": mask_color,
|
||||
},
|
||||
files={"origin_image": (
|
||||
'image.' + format.lower(), tensor_to_image_bytes(image, format),
|
||||
f'image/{format.lower()}')},
|
||||
timeout=timeout)
|
||||
job_resp.raise_for_status()
|
||||
job_resp = job_resp.json()
|
||||
if not job_resp["success"]:
|
||||
raise Exception("请求Modal API失败")
|
||||
job_id = job_resp["taskId"]
|
||||
|
||||
wait_time = 240
|
||||
interval = 3
|
||||
logger.info("开始轮询任务状态")
|
||||
for _ in range(0, wait_time, interval):
|
||||
logger.info("查询任务状态")
|
||||
result = requests.get(f"https://{endpoint}/google/{job_id}", timeout=timeout)
|
||||
if result.status_code == 200:
|
||||
result = result.json()
|
||||
if result["status"] == "success":
|
||||
logger.success("任务成功")
|
||||
image_b64 = json.loads(result["result"])[0]["image_b64"]
|
||||
image_tensor = base64_to_tensor(image_b64)
|
||||
return (image_tensor,)
|
||||
elif "fail" in result["status"].lower():
|
||||
raise Exception("任务失败")
|
||||
sleep(interval)
|
||||
raise Exception("查询任务状态超时")
|
||||
except Exception as e:
|
||||
raise Exception(e)
|
||||
|
||||
|
||||
class ModalEditCustom:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"image": ("IMAGE",),
|
||||
"prompt": ("STRING", {"default": "将背景去除,输出原尺寸图片"}),
|
||||
"endpoint": ("STRING", {"default": "bowongai-dev--bowong-ai-video-gemini-fastapi-webapp.modal.run"}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
RETURN_NAMES = ("image",)
|
||||
FUNCTION = "process"
|
||||
OUTPUT_NODE = False
|
||||
CATEGORY = "不忘科技-自定义节点🚩/图片/Gemini图像编辑"
|
||||
|
||||
def process(self, image: torch.Tensor, prompt: str, endpoint: str):
|
||||
try:
|
||||
timeout = 60
|
||||
logger.info("获取token")
|
||||
api_key = requests.get(f"https://{endpoint}/google/access-token",
|
||||
headers={'Authorization': 'Bearer bowong7777'}, timeout=timeout).json()[
|
||||
"access_token"]
|
||||
format = "PNG"
|
||||
logger.info("请求图像编辑")
|
||||
job_resp = requests.post(f"https://{endpoint}/google/image/edit_custom",
|
||||
headers={'x-google-api-key': api_key},
|
||||
data={
|
||||
"prompt": prompt
|
||||
},
|
||||
files={"origin_image": (
|
||||
'image.' + format.lower(), tensor_to_image_bytes(image, format),
|
||||
f'image/{format.lower()}')},
|
||||
timeout=timeout)
|
||||
job_resp.raise_for_status()
|
||||
job_resp = job_resp.json()
|
||||
if not job_resp["success"]:
|
||||
raise Exception("请求Modal API失败")
|
||||
job_id = job_resp["taskId"]
|
||||
|
||||
wait_time = 240
|
||||
interval = 3
|
||||
logger.info("开始轮询任务状态")
|
||||
for _ in range(0, wait_time, interval):
|
||||
logger.info("查询任务状态")
|
||||
result = requests.get(f"https://{endpoint}/google/{job_id}", timeout=timeout)
|
||||
if result.status_code == 200:
|
||||
result = result.json()
|
||||
if result["status"] == "success":
|
||||
logger.success("任务成功")
|
||||
image_b64 = json.loads(result["result"])[0]["image_b64"]
|
||||
image_tensor = base64_to_tensor(image_b64)
|
||||
return (image_tensor,)
|
||||
elif "fail" in result["status"].lower():
|
||||
raise Exception("任务失败")
|
||||
sleep(interval)
|
||||
raise Exception("查询任务状态超时")
|
||||
except Exception as e:
|
||||
raise Exception(e)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,73 @@
|
|||
import base64
|
||||
import io
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
|
||||
|
||||
def base64_to_tensor(base64_data: str) -> torch.Tensor:
|
||||
"""
|
||||
将""格式的图像数据转换为PyTorch张量
|
||||
|
||||
参数:
|
||||
base64_data: 图像的Base64编码字符串
|
||||
|
||||
返回:
|
||||
torch.Tensor: 形状为[C, H, W]的张量,取值范围为[0, 1]
|
||||
"""
|
||||
# 分离数据前缀和实际Base64编码部分
|
||||
if ';base64,' in base64_data:
|
||||
_, encoded = base64_data.split(';base64,', 1)
|
||||
else:
|
||||
encoded = base64_data # 假设直接提供了Base64编码部分
|
||||
|
||||
# 解码Base64数据
|
||||
decoded_data = base64.b64decode(encoded)
|
||||
|
||||
# 使用PIL打开图像
|
||||
image = Image.open(io.BytesIO(decoded_data))
|
||||
|
||||
# 转换为RGB模式(处理PNG的Alpha通道和WebP格式)
|
||||
if image.mode != 'RGB':
|
||||
image = image.convert('RGB')
|
||||
|
||||
# 转换为PyTorch张量
|
||||
from torchvision import transforms
|
||||
transform = transforms.Compose([
|
||||
transforms.ToTensor() # [H, W, C] -> [C, H, W],并归一化到[0, 1]
|
||||
])
|
||||
tensor = transform(image)
|
||||
|
||||
return tensor.unsqueeze(0).permute(0, 2, 3, 1)
|
||||
|
||||
|
||||
def tensor_to_image_bytes(tensor: torch.Tensor, format: str = 'PNG') -> bytes:
|
||||
"""
|
||||
将PyTorch张量转换为图像字节流
|
||||
|
||||
参数:
|
||||
tensor: 形状为[C, H, W]的图像张量,取值范围为[0, 1]
|
||||
format: 图像格式,可选'PNG'、'JPEG'等
|
||||
|
||||
返回:
|
||||
bytes: 图像的字节流数据
|
||||
"""
|
||||
if tensor.dim() == 4:
|
||||
if tensor.shape[0] > 1:
|
||||
print("警告:输入张量包含多个图像,仅使用第一个")
|
||||
tensor = tensor[0] # 取批量中的第一张图像
|
||||
tensor = tensor.permute(2, 0, 1)
|
||||
# 确保张量在[0, 255]范围内
|
||||
if tensor.max() <= 1.0:
|
||||
tensor = tensor * 255
|
||||
|
||||
# 转换为PIL图像
|
||||
image = transforms.ToPILImage()(tensor.byte())
|
||||
|
||||
# 保存为字节流
|
||||
buffer = io.BytesIO()
|
||||
image.save(buffer, format=format)
|
||||
buffer.seek(0) # 重置指针到开始位置
|
||||
|
||||
return buffer.getvalue()
|
||||
Loading…
Reference in New Issue